909 resultados para Roads Interchanges and intersections Mathematical models
Resumo:
Esta tesis investiga cuales son los parámetros más críticos que condicionan los resultados que obtienen en los ensayos de protección de peatones la flota Europea de vehículos, según la reglamentación europea de protección de peatones de 2003 (Directiva CE 2003/102) y el posterior Reglamento de 2009 (Reglamento CE 2009/78). En primer lugar se ha analizado el contexto de la protección de peatones en Europa, viendo la historia de las diferentes propuestas de procedimientos de ensayo así como los cambios (y las razones de los mismos) que han sufrido a lo largo del proceso de definición de la normativa Europea. Con la información disponible de más de 400 de estos ensayos se han desarrollado corredores de rigidez para los frontales de los diferentes segmentos de la flota de vehículos europea, siendo este uno de los resultados más relevantes de esta tesis. Posteriormente, esta tesis ha realizado un estudio accidentológico en detalle de los escenarios de atropello de peatones, identificando sus características más relevantes, los grupos de población con mayor riesgo y los tipos de lesiones más importantes que aparecen (en frecuencia y severidad), que han sentado las bases para analizar con modelos matemáticos hasta qué punto los métodos de ensayo propuestos realmente tienen estos factores en cuenta. Estos análisis no habrían sido posibles sin el desarrollo de las nuevas herramientas que se presentan en esta tesis, que permiten construir instantáneamente el modelo matemático de cualquier vehículo y cualquier peatón adulto para analizar su iteración. Así, esta tesis ha desarrollado una metodología rápida para desarrollar modelos matemáticos de vehículos a demanda, de cualquier marca y modelo y con las características geométricas y de rigidez deseados que permitan representarlo matemáticamente y del mismo modo, ha investigado cómo evoluciona el comportamiento del cuerpo humano durante el envejecimiento y ha implementado una funcionalidad de escalado en edad al modelo de peatón en multicuerpo de MADYMO (ya escalable en tamaño) para permitir modelar ad hoc cualquier peatón adulto (en género y edad). Finalmente, esta tesis también ha realizado, utilizando modelos de elementos finitos del cuerpo humano, diferentes estudios sobre la biomecánica de las lesiones más frecuentes de este tipo de accidentes, (en piernas y cabeza) con el objetivo de mejorar los procedimientos de ensayo para que predigan mejor el tipo de lesiones que se quieren evitar. Con el marco temporal y las condiciones de contorno de esta tesis se han centrado los esfuerzos en reforzar algunos aspectos críticos pero puntuales sobre cómo mejorar el ensayo de cabeza y, sobretodo, en proponer soluciones viables y con un valor añadido real al ensayo de pierna contra parachoques, sin cambiar la esencia del mismo pero proponiendo un nuevo impactador mejorado que incorpore una masa extra que representa a la parte superior del cuerpo y sea válido para toda la flota europea de vehículos independiente de la geometría de su frontal.
Resumo:
The province of Salta is located the Northwest of Argentina in the border with Bolivia, Chile and Paraguay. Its Capital is the city of Salta that concentrates half of the inhabitants of the province and has grown to 600000 hab., from a small active Spanish town well founded in 1583. The city is crossed by the Arenales River descending from close mountains at North, source of water and end of sewers. But with actual growing it has become a focus of infection and of remarkable unhealthiness. It is necessary to undertake a plan for the recovery of the river, directed to the attainment of the well-being and to improve the life?s quality of the Community. The fundamental idea of the plan is to obtain an ordering of the river basin and an integral management of the channel and its surroundings, including the cleaning out. The improvement of the water?s quality, the healthiness of the surroundings and the improvement of the environment, must go hand by hand with the development of sport activities, of relaxation, tourism, establishment of breeding grounds, kitchen gardens, micro enterprises with clean production and other actions that contribute to their benefit by the society, that being a basic factor for their care and sustainable use. The present pollution is organic, chemical, industrial, domestic, due to the disposition of sweepings and sewer effluents that affects not only the flora and small fauna, destroying the biodiversity, but also to the health of people living in their margins. Within the plan it will be necessary to consider, besides hydric and environmental cleaning and the prevention of floods, the planning of the extraction of aggregates, the infrastructure and consolidation of margins works and the arrangement of all the river basin. It will be necessary to consider the public intervention at state, provincial and local level, and the private intervention. In the model it has been necessary to include the sub-model corresponding to the election of the entity to be the optimal instrument to reach the proposed objectives, giving an answer to the social, environmental and economic requirements. For that the authors have used multi-criteria decision methods to qualify and select alternatives, and for the programming of their implementation. In the model the authors have contemplated the short, average and long term actions. They conform a Paretooptimal alternative which secures the ordering, integral and suitable management of the basin of the Arenales River, focusing on its passage by the city of Salta.
Resumo:
Introduction and motivation: A wide variety of organisms have developed in-ternal biomolecular clocks in order to adapt to cyclic changes of the environment. Clock operation involves genetic networks. These genetic networks have to be mod¬eled in order to understand the underlying mechanism of oscillations and to design new synthetic cellular clocks. This doctoral thesis has resulted in two contributions to the fields of genetic clocks and systems and synthetic biology, generally. The first contribution is a new genetic circuit model that exhibits an oscillatory behav¬ior through catalytic RNA molecules. The second and major contribution is a new genetic circuit model demonstrating that a repressor molecule acting on the positive feedback of a self-activating gene produces reliable oscillations. First contribution: A new model of a synthetic genetic oscillator based on a typical two-gene motif with one positive and one negative feedback loop is pre¬sented. The originality is that the repressor is a catalytic RNA molecule rather than a protein or a non-catalytic RNA molecule. This catalytic RNA is a ribozyme that acts post-transcriptionally by binding to and cleaving target mRNA molecules. This genetic clock involves just two genes, a mRNA and an activator protein, apart from the ribozyme. Parameter values that produce a circadian period in both determin¬istic and stochastic simulations have been chosen as an example of clock operation. The effects of the stochastic fluctuations are quantified by a period histogram and autocorrelation function. The conclusion is that catalytic RNA molecules can act as repressor proteins and simplify the design of genetic oscillators. Second and major contribution: It is demonstrated that a self-activating gene in conjunction with a simple negative interaction can easily produce robust matically validated. This model is comprised of two clearly distinct parts. The first is a positive feedback created by a protein that binds to the promoter of its own gene and activates the transcription. The second is a negative interaction in which a repressor molecule prevents this protein from binding to its promoter. A stochastic study shows that the system is robust to noise. A deterministic study identifies that the oscillator dynamics are mainly driven by two types of biomolecules: the protein, and the complex formed by the repressor and this protein. The main conclusion of this study is that a simple and usual negative interaction, such as degradation, se¬questration or inhibition, acting on the positive transcriptional feedback of a single gene is a sufficient condition to produce reliable oscillations. One gene is enough and the positive transcriptional feedback signal does not need to activate a second repressor gene. At the genetic level, this means that an explicit negative feedback loop is not necessary. Unlike many genetic oscillators, this model needs neither cooperative binding reactions nor the formation of protein multimers. Applications and future research directions: Recently, RNA molecules have been found to play many new catalytic roles. The first oscillatory genetic model proposed in this thesis uses ribozymes as repressor molecules. This could provide new synthetic biology design principles and a better understanding of cel¬lular clocks regulated by RNA molecules. The second genetic model proposed here involves only a repression acting on a self-activating gene and produces robust oscil¬lations. Unlike current two-gene oscillators, this model surprisingly does not require a second repressor gene. This result could help to clarify the design principles of cellular clocks and constitute a new efficient tool for engineering synthetic genetic oscillators. Possible follow-on research directions are: validate models in vivo and in vitro, research the potential of second model as a genetic memory, investigate new genetic oscillators regulated by non-coding RNAs and design a biosensor of positive feedbacks in genetic networks based on the operation of the second model Resumen Introduccion y motivacion: Una amplia variedad de organismos han desarro-llado relojes biomoleculares internos con el fin de adaptarse a los cambios ciclicos del entorno. El funcionamiento de estos relojes involucra redes geneticas. El mo delado de estas redes geneticas es esencial tanto para entender los mecanismos que producen las oscilaciones como para diseiiar nuevos circuitos sinteticos en celulas. Esta tesis doctoral ha dado lugar a dos contribuciones dentro de los campos de los circuitos geneticos en particular, y biologia de sistemas y sintetica en general. La primera contribucion es un nuevo modelo de circuito genetico que muestra un comportamiento oscilatorio usando moleculas de ARN cataliticas. La segunda y principal contribucion es un nuevo modelo de circuito genetico que demuestra que una molecula represora actuando sobre el lazo de un gen auto-activado produce oscilaciones robustas. Primera contribucion: Es un nuevo modelo de oscilador genetico sintetico basado en una tipica red genetica compuesta por dos genes con dos lazos de retroa-limentacion, uno positivo y otro negativo. La novedad de este modelo es que el represor es una molecula de ARN catalftica, en lugar de una protefna o una molecula de ARN no-catalitica. Este ARN catalitico es una ribozima que actua despues de la transcription genetica uniendose y cortando moleculas de ARN mensajero (ARNm). Este reloj genetico involucra solo dos genes, un ARNm y una proteina activadora, aparte de la ribozima. Como ejemplo de funcionamiento, se han escogido valores de los parametros que producen oscilaciones con periodo circadiano (24 horas) tanto en simulaciones deterministas como estocasticas. El efecto de las fluctuaciones es-tocasticas ha sido cuantificado mediante un histograma del periodo y la función de auto-correlacion. La conclusion es que las moleculas de ARN con propiedades cataliticas pueden jugar el misnio papel que las protemas represoras, y por lo tanto, simplificar el diseno de los osciladores geneticos. Segunda y principal contribucion: Es un nuevo modelo de oscilador genetico que demuestra que un gen auto-activado junto con una simple interaction negativa puede producir oscilaciones robustas. Este modelo ha sido estudiado y validado matematicamente. El modelo esta compuesto de dos partes bien diferenciadas. La primera parte es un lazo de retroalimentacion positiva creado por una proteina que se une al promotor de su propio gen activando la transcription. La segunda parte es una interaction negativa en la que una molecula represora evita la union de la proteina con el promotor. Un estudio estocastico muestra que el sistema es robusto al ruido. Un estudio determinista muestra que la dinamica del sistema es debida principalmente a dos tipos de biomoleculas: la proteina, y el complejo formado por el represor y esta proteina. La conclusion principal de este estudio es que una simple y usual interaction negativa, tal como una degradation, un secuestro o una inhibition, actuando sobre el lazo de retroalimentacion positiva de un solo gen es una condition suficiente para producir oscilaciones robustas. Un gen es suficiente y el lazo de retroalimentacion positiva no necesita activar a un segundo gen represor, tal y como ocurre en los relojes actuales con dos genes. Esto significa que a nivel genetico un lazo de retroalimentacion negativa no es necesario de forma explicita. Ademas, este modelo no necesita reacciones cooperativas ni la formation de multimeros proteicos, al contrario que en muchos osciladores geneticos. Aplicaciones y futuras lineas de investigacion: En los liltimos anos, se han descubierto muchas moleculas de ARN con capacidad catalitica. El primer modelo de oscilador genetico propuesto en esta tesis usa ribozimas como moleculas repre¬soras. Esto podria proporcionar nuevos principios de diseno en biologia sintetica y una mejor comprension de los relojes celulares regulados por moleculas de ARN. El segundo modelo de oscilador genetico propuesto aqui involucra solo una represion actuando sobre un gen auto-activado y produce oscilaciones robustas. Sorprendente-mente, un segundo gen represor no es necesario al contrario que en los bien conocidos osciladores con dos genes. Este resultado podria ayudar a clarificar los principios de diseno de los relojes celulares naturales y constituir una nueva y eficiente he-rramienta para crear osciladores geneticos sinteticos. Algunas de las futuras lineas de investigation abiertas tras esta tesis son: (1) la validation in vivo e in vitro de ambos modelos, (2) el estudio del potential del segundo modelo como circuito base para la construction de una memoria genetica, (3) el estudio de nuevos osciladores geneticos regulados por ARN no codificante y, por ultimo, (4) el rediseno del se¬gundo modelo de oscilador genetico para su uso como biosensor capaz de detectar genes auto-activados en redes geneticas.
Resumo:
There is evidence that the climate changes and that now, the change is influenced and accelerated by the CO2 augmentation in atmosphere due to combustion by humans. Such ?Climate change? is on the policy agenda at the global level, with the aim of understanding and reducing its causes and to mitigate its consequences. In most countries and international organisms UNO (e.g. Rio de Janeiro 1992), OECD, EC, etc . . . the efforts and debates have been directed to know the possible causes, to predict the future evolution of some variable conditioners, and trying to make studies to fight against the effects or to delay the negative evolution of such. The Protocol of Kyoto 1997 set international efforts about CO2 emissions, but it was partial and not followed e.g. by USA and China . . . , and in Durban 2011 the ineffectiveness of humanity on such global real challenges was set as evident. Among all that, the elaboration of a global model was not boarded that can help to choose the best alternative between the feasible ones, to elaborate the strategies and to evaluate the costs, and the authors propose to enter in that frame for study. As in all natural, technological and social changes, the best-prepared countries will have the best bear and the more rapid recover. In all the geographic areas the alternative will not be the same one, but the model must help us to make the appropriated decision. It is essential to know those areas that are more sensitive to the negative effects of climate change, the parameters to take into account for its evaluation, and comprehensive plans to deal with it. The objective of this paper is to elaborate a mathematical model support of decisions, which will allow to develop and to evaluate alternatives of adaptation to the climatic change of different communities in Europe and Latin-America, mainly in especially vulnerable areas to the climatic change, considering in them all the intervening factors. The models will consider criteria of physical type (meteorological, edaphic, water resources), of use of the ground (agriculturist, forest, mining, industrial, urban, tourist, cattle dealer), economic (income, costs, benefits, infrastructures), social (population), politician (implementation, legislation), educative (Educational programs, diffusion) and environmental, at the present moment and the future. The intention is to obtain tools for aiding to get a realistic position for these challenges, which are an important part of the future problems of humanity in next decades.
Resumo:
Climate change is on the policy agenda at the global level, with the aim of understanding and reducing its causes and to mitigate its consequences. In most of the countries and international organisms UNO, OECD, EC, etc … the efforts and debates have been directed to know the possible causes, to predict the future evolution of some variable conditioners, and trying to make studies to fight against the effects or to delay the negative evolution of such. Nevertheless, the elaboration of a global model was not boarded that can help to choose the best alternative between the feasible ones, to elaborate the strategies and to evaluate the costs. As in all natural, technological and social changes, the best-prepared countries will have the best bear and the more rapid recover. In all the geographic areas the alternative will not be the same one, but the model should help us to make the appropriated decision. It is essential to know those areas that are more sensitive to the negative effects of climate change, the parameters to take into account for its evaluation, and comprehensive plans to deal with it. The objective of this paper is to elaborate a mathematical model support of decisions, that will allow to develop and to evaluate alternatives of adaptation to the climatic change of different communities in Europe and Latin-America, mainly, in vulnerable areas to the climatic change, considering in them all the intervening factors. The models will take into consideration criteria of physical type (meteorological, edaphic, water resources), of use of the ground (agriculturist, forest, mining, industrial, urban, tourist, cattle dealer), economic (income, costs, benefits, infrastructures), social (population), politician (implementation, legislation), educative (Educational programs, diffusion), sanitary and environmental, at the present moment and the future.
Resumo:
Sight distance plays an important role in road traffic safety. Two types of Digital Elevation Models (DEMs) are utilized for the estimation of available sight distance in roads: Digital Terrain Models (DTMs) and Digital Surface Models (DSMs). DTMs, which represent the bare ground surface, are commonly used to determine available sight distance at the design stage. Additionally, the use of DSMs provides further information about elements by the roadsides such as trees, buildings, walls or even traffic signals which may reduce available sight distance. This document analyses the influence of three classes of DEMs in available sight distance estimation. For this purpose, diverse roads within the Region of Madrid (Spain) have been studied using software based on geographic information systems. The study evidences the influence of using each DEM in the outcome as well as the pros and cons of using each model.
Resumo:
Most models of tumorigenesis assume that the tumor grows by increased cell division. In these models, it is generally supposed that daughter cells behave as do their parents, and cell numbers have clear potential for exponential growth. We have constructed simple mathematical models of tumorigenesis through failure of programmed cell death (PCD) or differentiation. These models do not assume that descendant cells behave as their parents do. The models predict that exponential growth in cell numbers does sometimes occur, usually when stem cells fail to die or differentiate. At other times, exponential growth does not occur: instead, the number of cells in the population reaches a new, higher equilibrium. This behavior is predicted when fully differentiated cells fail to undergo PCD. When cells of intermediate differentiation fail to die or to differentiate further, the values of growth parameters determine whether growth is exponential or leads to a new equilibrium. The predictions of the model are sensitive to small differences in growth parameters. Failure of PCD and differentiation, leading to a new equilibrium number of cells, may explain many aspects of tumor behavior--for example, early premalignant lesions such as cervical intraepithelial neoplasia, the fact that some tumors very rarely become malignant, the observation of plateaux in the growth of some solid tumors, and, finally, long lag phases of growth until mutations arise that eventually result in exponential growth.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Cover title.
Resumo:
This paper formulates several mathematical models for determining the optimal sequence of component placements and assignment of component types to feeders simultaneously or the integrated scheduling problem for a type of surface mount technology placement machines, called the sequential pick-andplace (PAP) machine. A PAP machine has multiple stationary feeders storing components, a stationary working table holding a printed circuit board (PCB), and a movable placement head to pick up components from feeders and place them to a board. The objective of integrated problem is to minimize the total distance traveled by the placement head. Two integer nonlinear programming models are formulated first. Then, each of them is equivalently converted into an integer linear type. The models for the integrated problem are verified by two commercial packages. In addition, a hybrid genetic algorithm previously developed by the authors is adopted to solve the models. The algorithm not only generates the optimal solutions quickly for small-sized problems, but also outperforms the genetic algorithms developed by other researchers in terms of total traveling distance.
Resumo:
This paper presents the main achievements of the author’s PhD dissertation. The work is dedicated to mathematical and semi-empirical approaches applied to the case of Bulgarian wildland fires. After the introductory explanations, short information from every chapter is extracted to cover the main parts of the obtained results. The methods used are described in brief and main outcomes are listed. ACM Computing Classification System (1998): D.1.3, D.2.0, K.5.1.
Resumo:
This Licentiate Thesis is devoted to the presentation and discussion of some new contributions in applied mathematics directed towards scientific computing in sports engineering. It considers inverse problems of biomechanical simulations with rigid body musculoskeletal systems especially in cross-country skiing. This is a contrast to the main research on cross-country skiing biomechanics, which is based mainly on experimental testing alone. The thesis consists of an introduction and five papers. The introduction motivates the context of the papers and puts them into a more general framework. Two papers (D and E) consider studies of real questions in cross-country skiing, which are modelled and simulated. The results give some interesting indications, concerning these challenging questions, which can be used as a basis for further research. However, the measurements are not accurate enough to give the final answers. Paper C is a simulation study which is more extensive than paper D and E, and is compared to electromyography measurements in the literature. Validation in biomechanical simulations is difficult and reducing mathematical errors is one way of reaching closer to more realistic results. Paper A examines well-posedness for forward dynamics with full muscle dynamics. Moreover, paper B is a technical report which describes the problem formulation and mathematical models and simulation from paper A in more detail. Our new modelling together with the simulations enable new possibilities. This is similar to simulations of applications in other engineering fields, and need in the same way be handled with care in order to achieve reliable results. The results in this thesis indicate that it can be very useful to use mathematical modelling and numerical simulations when describing cross-country skiing biomechanics. Hence, this thesis contributes to the possibility of beginning to use and develop such modelling and simulation techniques also in this context.
Resumo:
Economic losses resulting from disease development can be reduced by accurate and early detection of plant pathogens. Early detection can provide the grower with useful information on optimal crop rotation patterns, varietal selections, appropriate control measures, harvest date and post harvest handling. Classical methods for the isolation of pathogens are commonly used only after disease symptoms. This frequently results in a delay in application of control measures at potentially important periods in crop production. This paper describes the application of both antibody and DNA based systems to monitor infection risk of air and soil borne fungal pathogens and the use of this information with mathematical models describing risk of disease associated with environmental parameters.
Resumo:
Ecological models written in a mathematical language L(M) or model language, with a given style or methodology can be considered as a text. It is possible to apply statistical linguistic laws and the experimental results demonstrate that the behaviour of a mathematical model is the same of any literary text of any natural language. A text has the following characteristics: (a) the variables, its transformed functions and parameters are the lexic units or LUN of ecological models; (b) the syllables are constituted by a LUN, or a chain of them, separated by operating or ordering LUNs; (c) the flow equations are words; and (d) the distribution of words (LUM and CLUN) according to their lengths is based on a Poisson distribution, the Chebanov's law. It is founded on Vakar's formula, that is calculated likewise the linguistic entropy for L(M). We will apply these ideas over practical examples using MARIOLA model. In this paper it will be studied the problem of the lengths of the simple lexic units composed lexic units and words of text models, expressing these lengths in number of the primitive symbols, and syllables. The use of these linguistic laws renders it possible to indicate the degree of information given by an ecological model.
Resumo:
In this thesis we present a mathematical formulation of the interaction between microorganisms such as bacteria or amoebae and chemicals, often produced by the organisms themselves. This interaction is called chemotaxis and leads to cellular aggregation. We derive some models to describe chemotaxis. The first is the pioneristic Keller-Segel parabolic-parabolic model and it is derived by two different frameworks: a macroscopic perspective and a microscopic perspective, in which we start with a stochastic differential equation and we perform a mean-field approximation. This parabolic model may be generalized by the introduction of a degenerate diffusion parameter, which depends on the density itself via a power law. Then we derive a model for chemotaxis based on Cattaneo's law of heat propagation with finite speed, which is a hyperbolic model. The last model proposed here is a hydrodynamic model, which takes into account the inertia of the system by a friction force. In the limit of strong friction, the model reduces to the parabolic model, whereas in the limit of weak friction, we recover a hyperbolic model. Finally, we analyze the instability condition, which is the condition that leads to aggregation, and we describe the different kinds of aggregates we may obtain: the parabolic models lead to clusters or peaks whereas the hyperbolic models lead to the formation of network patterns or filaments. Moreover, we discuss the analogy between bacterial colonies and self gravitating systems by comparing the chemotactic collapse and the gravitational collapse (Jeans instability).