973 resultados para Risk maintenance
Resumo:
The existing method of pipeline monitoring, which requires an entire pipeline to be inspected periodically, wastes time and is expensive. A risk-based model that reduces the amount of time spent on inspection has been developed. This model not only reduces the cost of maintaining petroleum pipelines, but also suggests an efficient design and operation philosophy, construction method and logical insurance plans.The risk-based model uses analytic hierarchy process, a multiple attribute decision-making technique, to identify factors that influence failure on specific segments and analyze their effects by determining the probabilities of risk factors. The severity of failure is determined through consequence analysis, which establishes the effect of a failure in terms of cost caused by each risk factor and determines the cumulative effect of failure through probability analysis.
Resumo:
Risks and uncertainties are inevitable in engineering projects and infrastructure investments. Decisions about investment in infrastructure such as for maintenance, rehabilitation and construction works can pose risks, and may generate significant impacts on social, cultural, environmental and other related issues. This report presents the results of a literature review of current practice in identifying, quantifying and managing risks and predicting impacts as part of the planning and assessment process for infrastructure investment proposals. In assessing proposals for investment in infrastructure, it is necessary to consider social, cultural and environmental risks and impacts to the overall community, as well as financial risks to the investor. The report defines and explains the concept of risk and uncertainty, and describes the three main methodology approaches to the analysis of risk and uncertainty in investment planning for infrastructure, viz examining a range of scenarios or options, sensitivity analysis, and a statistical probability approach, listed here in order of increasing merit and complexity. Forecasts of costs, benefits and community impacts of infrastructure are recognised as central aspects of developing and assessing investment proposals. Increasingly complex modelling techniques are being used for investment evaluation. The literature review identified forecasting errors as the major cause of risk. The report contains a summary of the broad nature of decision-making tools used by governments and other organisations in Australia, New Zealand, Europe and North America, and shows their overall approach to risk assessment in assessing public infrastructure proposals. While there are established techniques to quantify financial and economic risks, quantification is far less developed for political, social and environmental risks and impacts. The report contains a summary of the broad nature of decision-making tools used by governments and other organisations in Australia, New Zealand, Europe and North America, and shows their overall approach to risk assessment in assessing public infrastructure proposals. While there are established techniques to quantify financial and economic risks, quantification is far less developed for political, social and environmental risks and impacts. For risks that cannot be readily quantified, assessment techniques commonly include classification or rating systems for likelihood and consequence. The report outlines the system used by the Australian Defence Organisation and in the Australian Standard on risk management. After each risk is identified and quantified or rated, consideration can be given to reducing the risk, and managing any remaining risk as part of the scope of the project. The literature review identified use of risk mapping techniques by a North American chemical company and by the Australian Defence Organisation. This literature review has enabled a risk assessment strategy to be developed, and will underpin an examination of the feasibility of developing a risk assessment capability using a probability approach.
Resumo:
Queensland Department of Main Roads, Australia, spends approximately A$ 1 billion annually for road infrastructure asset management. To effectively manage road infrastructure, firstly road agencies not only need to optimise the expenditure for data collection, but at the same time, not jeopardise the reliability in using the optimised data to predict maintenance and rehabilitation costs. Secondly, road agencies need to accurately predict the deterioration rates of infrastructures to reflect local conditions so that the budget estimates could be accurately estimated. And finally, the prediction of budgets for maintenance and rehabilitation must provide a certain degree of reliability. This paper presents the results of case studies in using the probability-based method for an integrated approach (i.e. assessing optimal costs of pavement strength data collection; calibrating deterioration prediction models that suit local condition and assessing risk-adjusted budget estimates for road maintenance and rehabilitation for assessing life-cycle budget estimates). The probability concept is opening the path to having the means to predict life-cycle maintenance and rehabilitation budget estimates that have a known probability of success (e.g. produce budget estimates for a project life-cycle cost with 5% probability of exceeding). The paper also presents a conceptual decision-making framework in the form of risk mapping in which the life-cycle budget/cost investment could be considered in conjunction with social, environmental and political issues.
Resumo:
A Split System Approach (SSA) based methodology is presented to assist in making optimal Preventive Maintenance decisions for serial production lines. The methodology treats a production line as a complex series system with multiple PM actions over multiple intervals. Both risk related cost and maintenance related cost are factored into the methodology as either deterministic or random variables. This SSA based methodology enables Asset Management (AM) decisions to be optimized considering a variety of factors including failure probability, failure cost, maintenance cost, PM performance, and the type of PM strategy. The application of this new methodology and an evaluation of the effects of these factors on PM decisions are demonstrated using an example. The results of this work show that the performance of a PM strategy can be measured by its Total Expected Cost Index (TECI). The optimal PM interval is dependent on TECI, PM performance and types of PM strategies. These factors are interrelated. Generally it was found that a trade-off between reliability and the number of PM actions needs to be made so that one can minimize Total Expected Cost (TEC) for asset maintenance.
Resumo:
This paper reports on the development and implementation of a self-report risk assessment tool that was developed in an attempt to increase the efficacy of crash prediction within Australian fleet settings. This study forms a part of a broader program of research into work related road safety and identification of driving risk. The first phase of the study involved a series of focus groups being conducted with 217 professional drivers which revealed that the following factors were proposed to influence driving performance: Fatigue, Knowledge of risk, Mood, Impatience and frustration, Speed limits, Experience, Other road users, Passengers, Health, and Culture. The second phase of the study involved piloting the newly developed 38 item Driving Risk Assessment Scale - Work Version (DRAS-WV) with 546 professional drivers. Factor analytic techniques identified a 9 factor solution that was comprised of speeding, aggression, time pressure, distraction, casualness, awareness, maintenance, fatigue and minor damage. Speeding and aggressive driving manoeuvres were identified to be the most frequent aberrant driving behaviours engaged in by the sample. However, a series of logistic regression analyses undertaken to determine the DRAS-WV scale’s ability to predict self-reported crashes revealed limited predictive efficacy e.g., 10% of crashes. This paper outlines proposed reasons for this limited predictive ability of the DRAS-WV as well as provides suggestions regarding the future of research that aims to develop methods to identify “at risk” drivers.
Resumo:
Preventive Maintenance (PM) is often applied to improve the reliability of production lines. A Split System Approach (SSA) based methodology is presented to assist in making optimal PM decisions for serial production lines. The methodology treats a production line as a complex series system with multiple (imperfect) PM actions over multiple intervals. The conditional and overall reliability of the entire production line over these multiple PM intervals are hierarchically calculated using SSA, and provide a foundation for cost analysis. Both risk-related cost and maintenance-related cost are factored into the methodology as either deterministic or random variables. This SSA based methodology enables Asset Management (AM) decisions to be optimised considering a variety of factors including failure probability, failure cost, maintenance cost, PM performance, and the type of PM strategy. The application of this new methodology and an evaluation of the effects of these factors on PM decisions are demonstrated using an example. The results of this work show that the performance of a PM strategy can be measured by its Total Expected Cost Index (TECI). The optimal PM interval is dependent on TECI, PM performance and types of PM strategies. These factors are interrelated. Generally, it was found that a trade-off between reliability and the number of PM actions needs to be made so that one can minimise Total Expected Cost (TEC) for asset maintenance.
Resumo:
The need to address on-road motorcycle safety in Australia is important due to the disproportionately high percentage of riders and pillions killed and injured each year. One approach to preventing motorcycle-related injury is through training and education. However, motorcycle rider training lacks empirical support as an effective road safety countermeasure to reduce crash involvement. Previous reviews have highlighted that risk-taking is a contributing factor in many motorcycle crashes, rather than merely a lack of vehicle-control skills (Haworth & Mulvihill, 2005; Jonah, Dawson & Bragg, 1982; Watson et al, 1996). Hence, though the basic vehicle-handling skills and knowledge of road rules that are taught in most traditional motorcycle licence training programs may be seen as an essential condition of safe riding, they do not appear to be sufficient in terms of crash reduction. With this in mind there is considerable scope for the improvement of program focus and content for rider training and education. This program of research examined an existing traditional pre-licence motorcycle rider training program and formatively evaluated the addition of a new classroom-based module to address risky riding; the Three Steps to Safer Riding program. The pilot program was delivered in the real world context of the Q-Ride motorcycle licensing system in the state of Queensland, Australia. Three studies were conducted as part of the program of research: Study 1, a qualitative investigation of delivery practices and student learning needs in an existing rider training course; Study 2, an investigation of the extent to which an existing motorcycle rider training course addressed risky riding attitudes and motives; and Study 3, a formative evaluation of the new program. A literature review as well as the investigation of learning needs for motorcyclists in Study 1 aimed to inform the initial planning and development of the Three Steps to Safer Riding program. Findings from Study 1 suggested that the training delivery protocols used by the industry partner training organisation were consistent with a learner-centred approach and largely met the learning needs of trainee riders. However, it also found that information from the course needs to be reinforced by on-road experiences for some riders once licensed and that personal meaning for training information was not fully gained until some riding experience had been obtained. While this research informed the planning and development of the new program, a project team of academics and industry experts were responsible for the formulation of the final program. Study 2 and Study 3 were conducted for the purpose of formative evaluation and program refinement. Study 2 served primarily as a trial to test research protocols and data collection methods with the industry partner organisation and, importantly, also served to gather comparison data for the pilot program which was implemented with the same rider training organisation. Findings from Study 2 suggested that the existing training program of the partner organisation generally had a positive (albeit small) effect on safety in terms of influencing attitudes to risk taking, the propensity for thrill seeking, and intentions to engage in future risky riding. However, maintenance of these effects over time and the effects on riding behaviour remain unclear due to a low response rate upon follow-up 24 months after licensing. Study 3 was a formative evaluation of the new pilot program to establish program effects and possible areas for improvement. Study 3a examined the short term effects of the intervention pilot on psychosocial factors underpinning risky riding compared to the effects of the standard traditional training program (examined in Study 2). It showed that the course which included the Three Steps to Safer Riding program elicited significantly greater positive attitude change towards road safety than the existing standard licensing course. This effect was found immediately following training, and mean scores for attitudes towards safety were also maintained at the 12 month follow-up. The pilot program also had an immediate effect on other key variables such as risky riding intentions and the propensity for thrill seeking, although not significantly greater than the traditional standard training. A low response rate at the 12 month follow-up unfortunately prevented any firm conclusions being drawn regarding the impact of the pilot program on self-reported risky riding once licensed. Study 3a further showed that the use of intermediate outcomes such as self-reported attitudes and intentions for evaluation purposes provides insights into the mechanisms underpinning risky riding that can be changed by education and training. A multifaceted process evaluation conducted in Study 3b confirmed that the intervention pilot was largely delivered as designed, with course participants also rating most aspects of training delivery highly. The complete program of research contributed to the overall body of knowledge relating to motorcycle rider training, with some potential implications for policy in the area of motorcycle rider licensing. A key finding of the research was that psychosocial influences on risky riding can be shaped by structured education that focuses on awareness raising at a personal level and provides strategies to manage future riding situations. However, the formative evaluation was mainly designed to identify areas of improvement for the Three Steps to Safer Riding program and found several areas of potential refinement to improve future efficacy of the program. This included aspects of program content, program delivery, resource development, and measurement tools. The planned future follow-up of program participants' official crash and traffic offence records over time may lend further support for the application of the program within licensing systems. The findings reported in this thesis offer an initial indication that the Three Steps to Safer Riding is a useful resource to accompany skills-based training programs.
Resumo:
Linear assets are engineering infrastructure, such as pipelines, railway lines, and electricity cables, which span long distances and can be divided into different segments. Optimal management of such assets is critical for asset owners as they normally involve significant capital investment. Currently, Time Based Preventive Maintenance (TBPM) strategies are commonly used in industry to improve the reliability of such assets, as they are easy to implement compared with reliability or risk-based preventive maintenance strategies. Linear assets are normally of large scale and thus their preventive maintenance is costly. Their owners and maintainers are always seeking to optimize their TBPM outcomes in terms of minimizing total expected costs over a long term involving multiple maintenance cycles. These costs include repair costs, preventive maintenance costs, and production losses. A TBPM strategy defines when Preventive Maintenance (PM) starts, how frequently the PM is conducted and which segments of a linear asset are operated on in each PM action. A number of factors such as required minimal mission time, customer satisfaction, human resources, and acceptable risk levels need to be considered when planning such a strategy. However, in current practice, TBPM decisions are often made based on decision makers’ expertise or industrial historical practice, and lack a systematic analysis of the effects of these factors. To address this issue, here we investigate the characteristics of TBPM of linear assets, and develop an effective multiple criteria decision making approach for determining an optimal TBPM strategy. We develop a recursive optimization equation which makes it possible to evaluate the effect of different maintenance options for linear assets, such as the best partitioning of the asset into segments and the maintenance cost per segment.
Resumo:
Mutations within BRCA1 predispose carriers to a high risk of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through the assembly of multiple protein complexes involved in DNA repair, cell-cycle arrest, and transcriptional regulation. Here, we report the identification of a DNA damage-induced BRCA1 protein complex containing BCLAF1 and other key components of the mRNA-splicing machinery. In response to DNA damage, this complex regulates pre-mRNA splicing of a number of genes involved in DNA damage signaling and repair, thereby promoting the stability of these transcripts/proteins. Further, we show that abrogation of this complex results in sensitivity to DNA damage, defective DNA repair, and genomic instability. Interestingly, mutations in a number of proteins found within this complex have been identified in numerous cancer types. These data suggest that regulation of splicing by the BRCA1-mRNA splicing complex plays an important role in the cellular response to DNA damage.
Resumo:
The paper presents an innovative approach to modelling the causal relationships of human errors in rail crack incidents (RCI) from a managerial perspective. A Bayesian belief network is developed to model RCI by considering the human errors of designers, manufactures, operators and maintainers (DMOM) and the causal relationships involved. A set of dependent variables whose combinations express the relevant functions performed by each DMOM participant is used to model the causal relationships. A total of 14 RCI on Hong Kong’s mass transit railway (MTR) from 2008 to 2011 are used to illustrate the application of the model. Bayesian inference is used to conduct an importance analysis to assess the impact of the participants’ errors. Sensitivity analysis is then employed to gauge the effect the increased probability of occurrence of human errors on RCI. Finally, strategies for human error identification and mitigation of RCI are proposed. The identification of ability of maintainer in the case study as the most important factor influencing the probability of RCI implies the priority need to strengthen the maintenance management of the MTR system and that improving the inspection ability of the maintainer is likely to be an effective strategy for RCI risk mitigation.
Resumo:
Perhaps the most difficult job of the ecotoxicologist is extrapolating data calculated from laboratory experiments with high precision and accuracy into the real world of highly-dynamics aquatic environments. The establishment of baseline laboratory toxicity testing data for individual compounds and ecologically important and field studies serve as a precursor to ecosystem level studies needed for ecological risk assessment. The first stage in the field portion of risk assessment is the determination of actual environmental concentrations of the contaminant being studied and matching those concentrations with laboratory toxicity tests. Risk estimates can be produced via risk quotients that would determine the probability that adverse effects may occur. In this first stage of risk assessment, environmental realism is often not achieved. This is due, in part, to the fact that single-species laboratory toxicity tests, while highly controlled, do not account for the complex interactions (Chemical, physical, and biological) that take place in the natural environment. By controlling as many variables in the laboratory as possible, an experiment can be produced in such a fashion that real effects from a compound can be determined for a particular test organism. This type of approach obviously makes comparison with real world data most difficult. Conversely, field oriented studies fall short in the interpretation of ecological risk assessment because of low statistical power, lack of adequate replicaiton, and the enormous amount of time and money needed to perform such studies. Unlike a controlled laboratory bioassay, many other stressors other than the chemical compound in question affect organisms in the environment. These stressors range from natural occurrences (such as changes in temperature, salinity, and community interactions) to other confounding anthropogenic inputs. Therefore, an improved aquatic toxicity test that will enhance environmental realism and increase the accuracy of future ecotoxicological risk assessments is needed.
Resumo:
This paper describes a framework that is being developed for the prediction and analysis of electronics power module reliability both for qualification testing and in-service lifetime prediction. Physics of failure (PoF) reliability methodology using multi-physics high-fidelity and reduced order computer modelling, as well as numerical optimization techniques, are integrated in a dedicated computer modelling environment to meet the needs of the power module designers and manufacturers as well as end-users for both design and maintenance purposes. An example of lifetime prediction for a power module solder interconnect structure is described. Another example is the lifetime prediction of a power module for a railway traction control application. Also in the paper a combined physics of failure and data trending prognostic methodology for the health monitoring of power modules is discussed.
Resumo:
The long-term impact of dietary carbohydrate type, in particular sucrose, on insulin resistance and the development of diabetes and atherosclerosis is not established. Current guidelines for the healthy population advise restriction of sucrose intake. We investigated the effect of high- versus low-sucrose diet (25 vs. 10%, respectively, of total energy intake) in 13 healthy subjects aged 33 +/- 3 years (mean +/- SE), BMI 26.6 +/- 0.9 kg/m(2), in a randomized crossover design with sequential 6-week dietary interventions separated by a 4-week washout. Weight maintenance, eucaloric diets with identical macronutrient profiles and fiber content were designed. All food was weighed and distributed. Insulin action was assessed using a two-step euglycemic clamp; glycemic profiles were assessed by the continuous glucose monitoring system and vascular compliance by pulse-wave analysis. There was no change in weight across the study. Peripheral glucose uptake and suppression of endogenous glucose production were similar after each diet. Glycemic profiles and measures of vascular compliance did not change. A rise in total and LDL cholesterol was observed. In this study, a high-sucrose intake as part of an eucaloric, weight-maintaining diet had no detrimental effect on insulin sensitivity, glycemic profiles, or measures of vascular compliance in healthy nondiabetic subjects.
Resumo:
Purpose: To investigate the association of cardiovascular risk factors and inflammatory markers with neovascular age-related macular degeneration (AMD). Design: Cross-sectional case-control study. Participants: Of the 410 of the =65-year-old community sample invited to attend, 205 participated (50% response rate). Of the 215 clinic attendees who were invited to participate, 212 agreed to take part (98% response rate). A diagnosis of neovascular AMD in at least one eye was made in 193 clinic attendees and 2 of the community sample. Methods: Clinic and community participants underwent a detailed ophthalmic examination with fundus imaging, were interviewed for assessment of putative risk factors, and provided a blood sample. Analysis included levels of serum lipids, intercellular adhesion molecule 1 (ICAM), vascular cellular adhesion molecule (VCAM), and C-reactive protein (CRP). All participants were classified by fundus image grading on the basis of the eye with more severe AMD features. Main Outcome Measure: Neovascular AMD. Results: There were 195 participants with choroidal neovascularization in at least one eye, 97 nonneovascular AMD participants, and 115 controls (no drusen or pigmentary irregularities in either eye). In confounder-adjusted logistic regression, a history of cardiovascular disease was strongly associated with neovascular AMD (odds ratio [OR], 7.53; 95% confidence interval [CI], 2.78-20.41). Cigarette smoking (OR, 3.71; 95% CI, 1.25-11.06), being in the highest quartile of body mass index (OR, 3.82; 95% CI, 1.22-12.01), stage 2 hypertension (OR, 3.21; 95% CI, 1.14-8.98), and being in the highest quartile of serum cholesterol (OR, 4.66; 95% CI, 1.35-16.13) were positively associated with neovascular AMD. There was no association between AMD status and serum CRP, ICAM, or VCAM. Conclusions: Our results suggest that cardiovascular disease plays an etiological role in the development of choroidal neovascularization in a proportion of older adults and highlight the importance of control of blood pressure and cholesterol, avoidance of smoking, and maintenance of a normal body weight. © 2008 American Academy of Ophthalmology.