1000 resultados para Ring defect


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibre Bragg Grating (FBG) sensors have been installed along an existing line for the purposes of train detection and weight measurement. The results show fair accuracy and high resolution on the vertical force acted on track when the train wheels are rolling upon. While the sensors are already in place and data is available, further applications beyond train detection are explored. This study presents the analysis on the unique signatures from the data collected to characterise wheel-rail interaction for rail defect detection. Focus of this first stage of work is placed on the repeatability of signals from the same wheel-rail interactions while the rail is in healthy state. Discussions on the preliminary results and hence the feasibility of this condition monitoring application, as well as technical issues to be addressed in practice, are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties, however they are limited in access and availability and associated with donor site morbidity, haemorrhage, risk of infection, insufficient transplant integration, graft devitalisation, and subsequent resorption resulting in decreased mechanical stability. As a result, recent research focuses on the development of alternative therapeutic concepts. Analysing the tissue engineering literature it can be concluded that bone regeneration has become a focus area in the field. Hence, a considerable number of research groups and commercial entities work on the development of tissue engineered constructs for bone regeneration. However, bench to bedside translations are still infrequent as the process towards approval by regulatory bodies is protracted and costly, requiring both comprehensive in vitro and in vivo studies. In translational orthopaedic research, the utilisation of large preclinical animal models is a conditio sine qua non. Consequently, to allow comparison between different studies and their outcomes, it is essential that animal models, fixation devices, surgical procedures and methods of taking measurements are well standardized to produce reliable data pools as a base for further research directions. The following chapter reviews animal models of the weight-bearing lower extremity utilized in the field which include representations of fracture-healing, segmental bone defects, and fracture non-unions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this communication we provide the most recent results on RAFT-mediated ring-closing polymerization of diallyldimethylammonium chloride (DADMAC). The polymerization was carried out in aqueous solution employing 2,2′-azobis(2-methylpropionamidine)-dihydrochloride as the free radical initiator and trithiocarbonate RAFT agent (2-{[(dodecylsulfanyl)carbonothioyl sulfanyl]}propanoic acid, DoPAT) as the controlling RAFT agent. The results show that – while the system is not as completely controlled as previously described – it is nevertheless possible to mediate the polymerization of DADMAC and impart some living characteristics onto the system. The initial study on the RAFT-mediated polymerization of DADMAC may have overestimated the degree of livingness within this reaction. However, it is possible – at low conversions – for some living characteristics to be observed, as the evolution of molecular weight with conversion is linear. In addition, polymers with a reasonably narrow polydispersity can be isolated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a growing need for successful bone tissue engineering strategies and advanced biomaterials that mimic the structure and function of native tissues carry great promise. Successful bone repair approaches may include an osteoconductive scaffold, osteoinductive growth factors, cells with an osteogenic potential and capacity for graft vascularisation. To increase osteoinductivity of biomaterials, the local combination and delivery of growth factors has been developed. In the present study we investigated the osteogenic effects of calcium phosphate (CaP)-coated nanofiber mesh tube-mediated delivery of BMP-7 from a PRP matrix for the regeneration of critical sized segmental bone defects in a small animal model. Bilateral full-thickness diaphyseal segmental defects were created in twelve male Lewis rats and nanofiber mesh tubes were placed around the defect. Defects received either treatment with a CaP-coated nanofiber mesh tube (n = 6), an un-coated nanofiber mesh tube (n=6) a CaP-coated nanofiber mesh tube with PRP (n=6) or a CaP-coated nanofiber mesh tube in combination with 5 μg BMP-7 and PRP (n = 6). After 12 weeks, bone volume and biomechanical properties were evaluated using radiography, microCT, biomechanical testing and histology. The results demonstrated significantly higher biomechanical properties and bone volume for the BMP group compared to the control groups. These results were supported by the histological evaluations, where BMP group showed the highest rate of bone regeneration within the defect. In conclusion, BMP-7 delivery via PRP enhanced functional bone defect regeneration, and together these data support the use of BMP-7 in the treatment of critical sized defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reconstruction of large defects (>10 mm) in humans usually relies on bone graft transplantation. Limiting factors include availability of graft material, comorbidity, and insufficient integration into the damaged bone. We compare the gold standard autograft with biodegradable composite scaffolds consisting of medical-grade polycaprolactone and tricalcium phosphate combined with autologous bone marrow-derived mesenchymal stem cells (MSCs) or recombinant human bone morphogenetic protein 7 (rhBMP-7). Critical-sized defects in sheep - a model closely resembling human bone formation and structure - were treated with autograft, rhBMP-7, or MSCs. Bridging was observed within 3 months for both the autograft and the rhBMP-7 treatment. After 12 months, biomechanical analysis and microcomputed tomography imaging showed significantly greater bone formation and superior strength for the biomaterial scaffolds loaded with rhBMP-7 compared to the autograft. Axial bone distribution was greater at the interfaces. With rhBMP-7, at 3 months, the radial bone distribution within the scaffolds was homogeneous. At 12 months, however, significantly more bone was found in the scaffold architecture, indicating bone remodeling. Scaffolds alone or with MSC inclusion did not induce levels of bone formation comparable to those of the autograft and rhBMP-7 groups. Applied clinically, this approach using rhBMP-7 could overcome autograft-associated limitations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of ambiguity resolution (AR) of Global Navigation Satellite Systems (GNSS), decorrelation among entries of an ambiguity vector, integer ambiguity search and ambiguity validations are three standard procedures for solving integer least-squares problems. This paper contributes to AR issues from three aspects. Firstly, the orthogonality defect is introduced as a new measure of the performance of ambiguity decorrelation methods, and compared with the decorrelation number and with the condition number which are currently used as the judging criterion to measure the correlation of ambiguity variance-covariance matrix. Numerically, the orthogonality defect demonstrates slightly better performance as a measure of the correlation between decorrelation impact and computational efficiency than the condition number measure. Secondly, the paper examines the relationship of the decorrelation number, the condition number, the orthogonality defect and the size of the ambiguity search space with the ambiguity search candidates and search nodes. The size of the ambiguity search space can be properly estimated if the ambiguity matrix is decorrelated well, which is shown to be a significant parameter in the ambiguity search progress. Thirdly, a new ambiguity resolution scheme is proposed to improve ambiguity search efficiency through the control of the size of the ambiguity search space. The new AR scheme combines the LAMBDA search and validation procedures together, which results in a much smaller size of the search space and higher computational efficiency while retaining the same AR validation outcomes. In fact, the new scheme can deal with the case there are only one candidate, while the existing search methods require at least two candidates. If there are more than one candidate, the new scheme turns to the usual ratio-test procedure. Experimental results indicate that this combined method can indeed improve ambiguity search efficiency for both the single constellation and dual constellations respectively, showing the potential for processing high dimension integer parameters in multi-GNSS environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano silicon is widely used as the essential element of complementary metal–oxide–semiconductor (CMOS) and solar cells. It is recognized that today, large portion of world economy is built on electronics products and related services. Due to the accessible fossil fuel running out quickly, there are increasing numbers of researches on the nano silicon solar cells. The further improvement of higher performance nano silicon components requires characterizing the material properties of nano silicon. Specially, when the manufacturing process scales down to the nano level, the advanced components become more and more sensitive to the various defects induced by the manufacturing process. It is known that defects in mono-crystalline silicon have significant influence on its properties under nanoindentation. However, the cost involved in the practical nanoindentation as well as the complexity of preparing the specimen with controlled defects slow down the further research on mechanical characterization of defected silicon by experiment. Therefore, in current study, the molecular dynamics (MD) simulations are employed to investigate the mono-crystalline silicon properties with different pre-existing defects, especially cavities, under nanoindentation. Parametric studies including specimen size and loading rate, are firstly conducted to optimize computational efficiency. The optimized testing parameters are utilized for all simulation in defects study. Based on the validated model, different pre-existing defects are introduced to the silicon substrate, and then a group of nanoindentation simulations of these defected substrates are carried out. The simulation results are carefully investigated and compared with the perfect Silicon substrate which used as benchmark. It is found that pre-existing cavities in the silicon substrate obviously influence the mechanical properties. Furthermore, pre-existing cavities can absorb part of the strain energy during loading, and then release during unloading, which possibly causes less plastic deformation to the substrate. However, when the pre-existing cavities is close enough to the deformation zone or big enough to exceed the bearable stress of the crystal structure around the spherical cavity, the larger plastic deformation occurs which leads the collapse of the structure. Meanwhile, the influence exerted on the mechanical properties of silicon substrate depends on the location and size of the cavity. Substrate with larger cavity size or closer cavity position to the top surface, usually exhibits larger reduction on Young’s modulus and hardness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficacy of existing articular cartilage defect repair strategies are limited. Native cartilage tissue forms via a series of exquisitely orchestrated morphogenic events spanning through gestation into early childhood. However, defect repair must be achieved in a non-ideal microenvironment over an accelerated time-frame compatible with the normal life of an adult patient. Scaffolds formed from decellularized tissues are commonly utilized to enable the rapid and accurate repair of tissues such as skin, bladder and heart valves. The intact extracellular matrix remaining following the decellularization of these relatively low-matrix-density tissues is able to rapidly and accurately guide host cell repopulation. By contrast, the extraordinary density of cartilage matrix limits both the initial decellularization of donor material as well as its subsequent repopulation. Repopulation of donor cartilage matrix is generally limited to the periphery, with repopulation of lacunae deeper within the matrix mass being highly inefficient. Herein, we review the relevant literature and discuss the trend toward the use of decellularized donor cartilage matrix of microscopic dimensions. We show that 2-µm microparticles of donor matrix are rapidly integrate with articular chondrocytes, forming a robust cartilage-like composites with enhanced chondrogenic gene expression. Strategies for the clinical application of donor matrix microparticles in cartilage defect repair are discussed.