105 resultados para Riboflavin
Resumo:
Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13 bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2), which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-�) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ER� antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the cognate elements.
Resumo:
Folate is shown to react with singlet-excited state of riboflavin in a diffusion controlled reaction and with triplet-excited state of riboflavin in a somewhat slower reaction with (3)k(q) = 4.8 x 10(8) L mol(-1) s(-1) in aqueous phosphate buffer at pH 7.4, ionic strength of 0.2 mol L(-1), and 25 degrees C. Singlet quenching is assigned as photo-induced reductive electron transfer from ground state folate to singlet-excited riboflavin, while triplet quenching is assigned as one-electron transfer rather than hydrogen atom transfer from folate to triplet-excited riboflavin, as the reaction quantum yield, phi = 0.32, is hardly influenced by solvent change from water to deuterium oxide, phi = 0.37. Cyclic voltammetry showed an irreversible two-electron anodic process for folate, E = 1.14 V versus NHE at a scan-rate of 50 mV s(-1), which appears to be kinetically controlled by the heterogeneous electron transfer from the substrates to the electrode. Main products of folate photooxidation sensitized by riboflavin were pterin-6-carboxylic acid and p-aminobenzoyl-L-glutamic acid as shown by liquid chromatographic ion-trap mass spectrometry (LC-IT-MS).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Os autores padronizaram métodos para a avaliação da atividade da glicose-6-fosfato desidrogenase e glutationa redutase. O princípio geral do primeiro método baseou-se na formação de metahemoglobina pelo nitrito de sódio, seguido da estimulação da via das pentoses pelo azul de metileno. Foram estudados 46 indivíduos adultos, sendo 23 do sexo masculino e 23 do feminino, não deficientes em glicose-6-fosfato desidrogenase (G6PD), com idades variando entre 20 e 30 anos. Os resultados revelaram que a redução da metahemoglobina pelo azul de metileno para sangue total, foram de 154.50 e 139.90 mg/min (p<0.05) respectivamente para o sexo masculino e feminino. Para hemácias lavadas os valores foram de 221.10 e 207.85 mg/min (n.s.) respectivamente. Estas observações permitiram concluir que ao se empregar hemácias lavadas e 0.7 g% de concentração de nitrito de sódio, por um lado não houve diferença entre os sexos e por outro, abreviou o tempo de leitura da quantidade residual de metahemoglobina para 90 minutos. A avaliação da atividade da glutationa redutase foi feita baseado no fato de que a cistamina (agente tiol) liga-se aos grupos SH da hemoglobina formando complexos. Estes complexos são revertidos pela ação da glutationa redutase, ocorrendo conjuntamente nesta reação a redução da metahemoglobina. Foram estudados 32 indivíduos adultos, sendo 16 do sexo masculino e 16 do feminino, não deficientes em G6PD, com idades variando entre 20 e 30 anos. Os resultados revelaram valores de redução da metahemoglobina pela cistamina de 81.27 e 91.13 mg/min (p<0.01) respectivamente para o sexo masculino e feminino. Estas observações permitiram concluir que o emprego de hemácias lavadas e 0.1 molar de concentração de cistamina torna possível a leitura da quantidade residual de metahemoglobina aos 180 minutos de incubação. A atividade da glutationa redutase avaliada por meio da redução da metahemoglobina pela cistamina, foi estudada em 14 indivíduos do sexo feminino antes e após o tratamento com 10 mg por dia de riboflavina durante 8 dias. Os resultados foram de 73.69 e 94.26 mg/min (p<0.01) antes e após o tratamento. Estas observações permitiram concluir que a oferta de riboflavina, mesmo para indivíduos normais, aumenta a atividade da glutationa redutase. Foram ainda avaliados 3 indivíduos da raça negra e deficientes em G6PD, sendo 2 do sexo masculino e 1 do feminino. Houve ativação parcial da G6PD e glutationa redutase, sendo estas alterações mais intensas nos indivíduos do sexo masculino. Considerando-se a raça e as características laboratoriais observadas, foi possível sugerir que a deficiência em G6PD verificada é do tipo Africano, bem como, permitiu considerar os indivíduos do sexo feminino coin o sendo heterozigoto para esta deficiência. Por fim, a análise dos resultados em seu conjunto permitiu concluir que os métodos propostos se mostraram eficientes para avaliar a atividade da G6PD e glutationa redutase. Esta última é dependente da via das pentoses, geradora de NADPH e da riboflavina, vitamina precursora de FAD.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Corneal collagen cross-linking (CXL) has been described as a promising therapy for keratoconus. According to standard CXL protocol, epithelium should be debrided before treatment to allow penetration of riboflavin into the corneal stroma. However, removal of the epithelium can increase procedure risks. In this study we aim to evaluate stromal penetration of a biocompatible riboflavin-based nanoemulsion system (riboflavin-5-phosphate and riboflavin-base) in rabbit corneas with intact epithelium. Two riboflavin nanoemulsions were developed. Transmittance and absorption coefficient were measured on corneas with intact epithelia after 30, 60, 120, 180, and 240 minutes following exposure to either the nanoemulsions or standard 0.1% or 1% riboflavin-dextran solutions. For the nanoemulsions, the epithelium was removed after measurements to assure that the riboflavin had passed through the hydrophobic epithelium and retained within the stroma. Results were compared to de-epithelialized corneas exposed to 0.1% riboflavin solution and to the same riboflavin nanoemulsions for 30 minutes (standard protocol). Mean transmittance and absorption measured in epithelialized corneas receiving the standard 0.1% riboflavin solution did not reach the levels found on the debrided corneas using the standard technique. Neither increasing the time of exposure nor the concentration of the riboflavin solution from 0.1% to 1% improved riboflavin penetration through the epithelium. When using riboflavin-5-phosphate nanoemulsion for 240 minutes, we found no difference between the mean absorption coefficients to the standard cross-linking protocol (p = 0.54). Riboflavin nanoemulsion was able to penetrate the corneal epithelium, achieving, after 240 minutes, greater stromal concentration when compared to debrided corneas with the standard protocol (p = 0.002). The riboflavin-5-phosphate nanoemulsion diffused better into the stroma than the riboflavin-base nanoemulsion. © 2013 Bottos et al.
Resumo:
Different solid composites made by mechanical dispersions of graphite particles into heated paraffin (from 65 to 80% graphite, in mass) were prepared and assessed in order to optimize their use in electrochemical and electroanalytical procedures for bioanalysis. Besides these, composites were also evaluated by thermoanalytical techniques aiming to study their conservation and long-term stability (over eight months without special care), among others. Best results were found at 80% m/m graphite in paraffin. Such electrode combines low-cost, stability, sensitivity, ease of maintenance and clearance, besides the possibilities of manufacture in many different forms and shapes (with or without modifications) and applicability in a wide range of pH. Electrochemical studies by different voltammetric techniques involving vitamins from complex B (riboflavin and pyridoxine) leaded to a better understanding about their electrooxidative processes onto carbon-composite electrodes, specially regarding reversibility and pH-dependence. Data were also acquired and optimized with analytical purposes, being square-wave voltammetry in pH 4.2 chosen by its many advantages. Good linearity between peak responses as function of concentration were reached from 5 to 43 μmol L-1 for riboflavin (peak at -0.257 V) and up to 8.5 × 10-4 mol L -1 for pyridoxine (peak at +1.04 V), best studied conditions; limits of detection (at an S/N of 3) for both analites showed to be circa 1.0 mol L-1. Different commercial samples were analyzed for riboflavin (EMS® complex B syrup) and pyridoxine (Citoneurin 5000 Merck® ampoules) providing 96.6% and 98.7% recoveries, respectively.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
FMN riboswitches are genetic elements that, in many bacteria, control genes responsible for biosynthesis and/or transport of riboflavin (vitamin B2 ). We report that the Escherichia coli ribB FMN riboswitch controls expression of the essential gene ribB coding for the riboflavin biosynthetic enzyme 3,4-dihydroxy-2-butanone-4-phosphate synthase (RibB; EC 4.1.99.12). Our data show that the E. coli ribB FMN riboswitch is unusual because it operates at the transcriptional and also at the translational level. Expression of ribB is negatively affected by FMN and by the FMN analog roseoflavin mononucleotide, which is synthesized enzymatically from roseoflavin and ATP. Consequently, in addition to flavoenzymes, the E. coli ribB FMN riboswitch constitutes a target for the antibiotic roseoflavin produced by Streptomyces davawensis.
Resumo:
Flavin mononucleotide (FMN) riboswitches are genetic elements, which in many bacteria control genes responsible for biosynthesis and/or transport of riboflavin (rib genes). Cytoplasmic riboflavin is rapidly and almost completely converted to FMN by flavokinases. When cytoplasmic levels of FMN are sufficient (high levels), FMN binding to FMN riboswitches leads to a reduction of rib gene expression. We report here that the protein RibR counteracts the FMN-induced turn-off activities of both FMN riboswitches in Bacillus subtilis, allowing rib gene expression even in the presence of high levels of FMN. The reason for this secondary metabolic control by RibR is to couple sulfur metabolism with riboflavin metabolism.
Resumo:
Purpose: To present 7 cases of peripheral sterile corneal infiltrates that occurred after corneal cross-linking (CXL) for progressive keratectasia. Methods: Seven patients who had their progressive keratoconus documented underwent corneal deepithelization and subsequently CXL, which was performed with the application of 0.1% riboflavin with 20% dextran, and exposure to UVA light (370 nm, 2.9-3.1 mW/cm(2)) for 30 minutes. Results: Nearly a week after the procedure, the patients presented with peripheral stromal infiltrates. The ring-like infiltrates were superficial and were present at the 9.0-mm zone. Sterile infiltration was diagnosed. Patients were treated with topical corticosteroids, and complete resolution was achieved after a few weeks of treatment. Conclusions: We hypothesize that the phototoxic effect on the corneal stroma may be the main mechanism that triggers these infiltrates. Alternatively, alterations in antigenicity that occur in native proteins after CXL could result in patients recognizing the proteins as nonself and mounting immune responses.
Resumo:
The S41A mutant of riboflavin synthase from Escherichia coli catalyzes the formation of riboflavin from 6,7-dimethyl-8-ribityllumazine at a very low rate. Quenching of presteady-state reaction mixtures with trifluoroacetic acid afforded a compound with an absorption maximum at 412 nm (pH 1.0) that can be converted to a mixture of riboflavin and 6,7-dimethyl-8-ribityllumazine by treatment with wild-type riboflavin synthase. The compound was shown to qualify as a kinetically competent intermediate of the riboflavin synthase-catalyzed reaction. Multinuclear NMR spectroscopy, using various 13C- and 15N-labeled samples, revealed a pentacyclic structure arising by dimerization of 6,7-dimethyl-8-ribityllumazine. Enzyme-catalyzed fragmentation of this compound under formation of riboflavin can occur easily by a sequence of two elimination reactions.
Resumo:
Cover-title.