959 resultados para Reverse water-gas shift
Resumo:
Il presente lavoro di tesi si è focalizzato sullo studio e sulla ottimizzazione di un sistema integrato, che utilizzi la reazione di oxy-reforming del metano al fine di produrre syngas che venga trattato attraverso la water-gas shift al fine di abbattere il contenuto di CO e al tempo stesso aumentare la resa in H2. Con l’obiettivo di ottenere H2 ad elevata purezza (>99%) da poter essere inviato direttamente a celle a combustible ed in impianti di piccola taglia con possibile delocalizzazione della produzione industriale di energia elettrica e termica “pulita”, la miscela reale uscente dal processo di oxy-reforming è stata processata tramite successiva water-gas shift direttamente all’interno di una membrana ceramica al Pd selettiva nella separazione di H2. L’innovativià di questo progetto di studio è data da diversi parametri quali: 1) l’impiego dell’oxy-reforming in alternativa al normale steam-reforming del CH4, che permette di condurre il processo a temperature decisamente inferiori (700-750°C), utilizzando un minor quantitativo di vapore (S/C = 0.7); 2) l’utilizzo di due nuove formulazioni di catalizzatore di WGS per alte temperature, capace di operare in un unico stadio conversioni di CO ottenibili industrialmente solo attraverso i convenzionali due due stadi di reazione (e due diverse formulazioni di catalizzatori a base di Fe/Cr e Cu); 3) l’utilizzo di supporti ceramici con membrana a base di Pd, capaci di ospitare al loro interno un catalizzatore eterogeneo per la reazione di WGS a 400°C, rendendo quindi possibile la produzione e contemporanea separazione di H2 con un ulteriore effetto positivo poiché la membrana rimuovendo H2 dalla zona di reazione favorisce il superamento dell’equilibrio termodinamico per la conversione del CO, abbassandone il contenuto nel flusso uscente dei gas reazione e rendendo non più necessari sistemi aggiuntivi di separazione quali PSA o PROXY.
Performance of hydrophobic and hydrophilic silica membrane reactors for the water gas shift reaction
Resumo:
In this study, a novel molecular sieve silica (MSS) membrane packed bed reactor (PBR) using a Cu/ZnO/Al2O3 catalyst was applied to the low-temperature water gas shift reaction (WGS). Best permeation results were H-2 permeances of 1.5 x 10(-6) mol(.)s(-1) m(-2) Pa-1, H-2/CO2 selectivities of 8 and H-2/N-2 selectivities of 18. It was shown that an operation with a sweep gas flow of 80 cm 3 min(-1), a feed flow rate of 50 cm(3) min(-1) and a H2O/CO molar ratio of one at 280 degreesC reached a 99% CO conversion. This is well above the thermodynamic equilibrium and achievable PBR conversion. Hydrophilic membranes underwent pore widening during the reaction while hydrophobic membranes indicated no such behaviour and also showed increased H-2 permeation with temperature, a characteristic of activated transport. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
This paper presents an analysis of membrane reactor (MR) operation and design for enhanced hydrogen production from the water gas shift (WGS) reaction. It has been established that membrane reactors can enhance an equilibrium limited reaction through product separation. However, the detailed effects of reactor setup, membrane configuration and catalyst volume have yet to be properly analysed for this reaction. This paper investigates new ideas for membrane reactors such as the development of new catalytic films, for improved interaction between the reaction and separation zones. Current membrane reactors utilise a packed bed of catalyst within the membrane tube, utilising a large volume of catalyst to drive reaction. This is still inefficient and provides only limited benefits over conventional WGS reactors. New reactor configurations look to optimise the interactive effects between reaction and separation to provide improved operation. In this paper, thin film catalysts were produced using dip coating and spray coating techniques. This technique produced catalyst coatings with good thickness, though the abrasion strength of the dip coated catalyst was quite low. The catalyst was tested in a packed bed reactor for temperature activity at low temperatures and catalyst activity at varying levels of excess water
Resumo:
Cu/CeO2, Pd/CeO2, and CuPd/CeO2 catalysts were prepared and their reduction followed by in-situ XPS in order to explore promoter and support interactions in a bimetallic CuPd/CeO2 catalyst effective for the oxygen-assisted water-gas-shift (OWGS) reaction. Mutual interactions between Cu, Pd, and CeO2 components all affect the reduction process. Addition of only 1 wt% Pd to 30 wt% Cu/CeO2 greatly enhances the reducibility of both dispersed CuO and ceria support. In-vacuo reduction (inside XPS chamber) up to 400 °C results in a continuous growth of metallic copper and Ce3+ surface species, although higher temperatures results in support reoxidation. Supported copper in turn destabilizes metallic palladium metal with respect to PdO, this mutual perturbation indicating a strong intimate interaction between the Cu–Pd components. Despite its lower intrinsic reactivity towards OWGS, palladium addition at only 1 wt% loading significantly improved CO conversion in OWGS reaction over a monometallic 30 wt% Cu/CeO2 catalysts, possibly by helping to maintain Cu in a reduced state during reaction.
Resumo:
Methanol steam reforming reaction was studied over Cu(5 wt.%)/CeO2 with and without the presence of Zn. The Zn addition decreased the Cu+2 reducibility and increased the oxygen mobility of ceria. The main products were CO2 and H2 with small amount of CO. Selectivity to CO decreased with the Zn addition and it was lower at lower reaction temperatures and lower space velocities. At 230 ºC and W/F MeOH = 648 g min mol-1 selectivities to H2 and to CO2 were 100% on Zn/Cu/Ce. The catalytic results indicated that CO was mainly a secondary product formed from reverse water gas shift reaction.
Resumo:
Catalysts containing NiO/MgO/ZrO(2) mixtures were synthesized by the polymerization method in a single step. They were characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR) and physisorption of N(2) (BET) and then tested in the reforming of a model biogas (1.5CH4:1CO(2)) in the presence of air (1.5CH(4) + 1CO(2) + 0.25O(2)) at 750 degrees C for 6h. It was observed that the catalyst Ni20MZ performed better in catalytic processes than the well known catalysts, Ni/ZrO(2) and Ni/MgO, synthesized under the same conditions. The formation of solid solutions, MgO-ZrO(2) and NiO-MgO, increased the rate of conversion of reactants (CH(4) and CO(2)) into synthesis gas (H(2) + CO). The formation of oxygen vacancies (in samples containing ZrO(2) and MgO) seems to promote removal of the coke deposited on the nickel surface. The values of the H(2)/CO ratio were generally found to be slightly lower than stoichiometric, owing to the reverse water gas shift reaction occurring in parallel. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
An accurate characterization of the rhodium specimen was obtained via FIM experiments. Reaction behaviors between H2 and CO2 were observed in FEM mode at 700 K. At this temperature, CO desorption occurs, preventing CO+H2 reaction. Surface is mainly recovered by oxygen; reaction with hydrogen occurs. Finally, we can identify the reaction as the Reverse Water Gas Shift.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la universitat d'Udine, Itàlia, entre setembre i desembre del 2006.S'han caracteritzat mitjançant la reducció a temperatura programada i tests catalítics catalitzadors en pols basats en cobalt i supostats en òxid de zinc i monòlits ceràmics funcionaliltzats també amb cobalt i òxid de zinc. L'addició de promotors (manganès, crom i ferro ) als catalitzadors en pols, preparats per impregnació i precipitació, no afecta significativament ni la temperatura a la qual té lloc la reducció ni al percentatge global de reducció. En els cicles de reducció-oxidació sí que s'observen diferències entre el primer perfil de reducció i els següents, especialment en el cas de la mostra que té ferro com a promotor, on les diferències s'accentuen en cicles successius (fins al quart). S'ha evaluat l'activitat d'aquests catalitzadors en la reacció de desplaçament de gas d'aigua, obtenint uns resultats satisfactoris. Finalment s'han realitzat reduccions a temperatura programada i tests catalítics en la reacció de desplaçament de gas d'aigua amb monòlits funcionalitzats amb cobalt i òxid de zinc (en cap d'ells s'ha introduït promotors). El nivell de conversió assolit és menor que en el cas de catalitzadors en pols, fet que s'associa a la geometria d'aquests sistemes catalítics, però la relació CH4/CO2 és més favorable que en els catalitzadors en pols, el que els converteix en sistemes molt selectius.
Resumo:
In such territories where food production is mostly scattered in several small / medium size or even domestic farms, a lot of heterogeneous residues are produced yearly, since farmers usually carry out different activities in their properties. The amount and composition of farm residues, therefore, widely change during year, according to the single production process periodically achieved. Coupling high efficiency micro-cogeneration energy units with easy handling biomass conversion equipments, suitable to treat different materials, would provide many important advantages to the farmers and to the community as well, so that the increase in feedstock flexibility of gasification units is nowadays seen as a further paramount step towards their wide spreading in rural areas and as a real necessity for their utilization at small scale. Two main research topics were thought to be of main concern at this purpose, and they were therefore discussed in this work: the investigation of fuels properties impact on gasification process development and the technical feasibility of small scale gasification units integration with cogeneration systems. According to these two main aspects, the present work was thus divided in two main parts. The first one is focused on the biomass gasification process, that was investigated in its theoretical aspects and then analytically modelled in order to simulate thermo-chemical conversion of different biomass fuels, such as wood (park waste wood and softwood), wheat straw, sewage sludge and refuse derived fuels. The main idea is to correlate the results of reactor design procedures with the physical properties of biomasses and the corresponding working conditions of gasifiers (temperature profile, above all), in order to point out the main differences which prevent the use of the same conversion unit for different materials. At this scope, a gasification kinetic free model was initially developed in Excel sheets, considering different values of air to biomass ratio and the downdraft gasification technology as particular examined application. The differences in syngas production and working conditions (process temperatures, above all) among the considered fuels were tried to be connected to some biomass properties, such elementary composition, ash and water contents. The novelty of this analytical approach was the use of kinetic constants ratio in order to determine oxygen distribution among the different oxidation reactions (regarding volatile matter only) while equilibrium of water gas shift reaction was considered in gasification zone, by which the energy and mass balances involved in the process algorithm were linked together, as well. Moreover, the main advantage of this analytical tool is the easiness by which the input data corresponding to the particular biomass materials can be inserted into the model, so that a rapid evaluation on their own thermo-chemical conversion properties is possible to be obtained, mainly based on their chemical composition A good conformity of the model results with the other literature and experimental data was detected for almost all the considered materials (except for refuse derived fuels, because of their unfitting chemical composition with the model assumptions). Successively, a dimensioning procedure for open core downdraft gasifiers was set up, by the analysis on the fundamental thermo-physical and thermo-chemical mechanisms which are supposed to regulate the main solid conversion steps involved in the gasification process. Gasification units were schematically subdivided in four reaction zones, respectively corresponding to biomass heating, solids drying, pyrolysis and char gasification processes, and the time required for the full development of each of these steps was correlated to the kinetics rates (for pyrolysis and char gasification processes only) and to the heat and mass transfer phenomena from gas to solid phase. On the basis of this analysis and according to the kinetic free model results and biomass physical properties (particles size, above all) it was achieved that for all the considered materials char gasification step is kinetically limited and therefore temperature is the main working parameter controlling this step. Solids drying is mainly regulated by heat transfer from bulk gas to the inner layers of particles and the corresponding time especially depends on particle size. Biomass heating is almost totally achieved by the radiative heat transfer from the hot walls of reactor to the bed of material. For pyrolysis, instead, working temperature, particles size and the same nature of biomass (through its own pyrolysis heat) have all comparable weights on the process development, so that the corresponding time can be differently depending on one of these factors according to the particular fuel is gasified and the particular conditions are established inside the gasifier. The same analysis also led to the estimation of reaction zone volumes for each biomass fuel, so as a comparison among the dimensions of the differently fed gasification units was finally accomplished. Each biomass material showed a different volumes distribution, so that any dimensioned gasification unit does not seem to be suitable for more than one biomass species. Nevertheless, since reactors diameters were found out quite similar for all the examined materials, it could be envisaged to design a single units for all of them by adopting the largest diameter and by combining together the maximum heights of each reaction zone, as they were calculated for the different biomasses. A total height of gasifier as around 2400mm would be obtained in this case. Besides, by arranging air injecting nozzles at different levels along the reactor, gasification zone could be properly set up according to the particular material is in turn gasified. Finally, since gasification and pyrolysis times were found to considerably change according to even short temperature variations, it could be also envisaged to regulate air feeding rate for each gasified material (which process temperatures depend on), so as the available reactor volumes would be suitable for the complete development of solid conversion in each case, without even changing fluid dynamics behaviour of the unit as well as air/biomass ratio in noticeable measure. The second part of this work dealt with the gas cleaning systems to be adopted downstream the gasifiers in order to run high efficiency CHP units (i.e. internal engines and micro-turbines). Especially in the case multi–fuel gasifiers are assumed to be used, weightier gas cleaning lines need to be envisaged in order to reach the standard gas quality degree required to fuel cogeneration units. Indeed, as the more heterogeneous feed to the gasification unit, several contaminant species can simultaneously be present in the exit gas stream and, as a consequence, suitable gas cleaning systems have to be designed. In this work, an overall study on gas cleaning lines assessment is carried out. Differently from the other research efforts carried out in the same field, the main scope is to define general arrangements for gas cleaning lines suitable to remove several contaminants from the gas stream, independently on the feedstock material and the energy plant size The gas contaminant species taken into account in this analysis were: particulate, tars, sulphur (in H2S form), alkali metals, nitrogen (in NH3 form) and acid gases (in HCl form). For each of these species, alternative cleaning devices were designed according to three different plant sizes, respectively corresponding with 8Nm3/h, 125Nm3/h and 350Nm3/h gas flows. Their performances were examined on the basis of their optimal working conditions (efficiency, temperature and pressure drops, above all) and their own consumption of energy and materials. Successively, the designed units were combined together in different overall gas cleaning line arrangements, paths, by following some technical constraints which were mainly determined from the same performance analysis on the cleaning units and from the presumable synergic effects by contaminants on the right working of some of them (filters clogging, catalysts deactivation, etc.). One of the main issues to be stated in paths design accomplishment was the tars removal from the gas stream, preventing filters plugging and/or line pipes clogging At this scope, a catalytic tars cracking unit was envisaged as the only solution to be adopted, and, therefore, a catalytic material which is able to work at relatively low temperatures was chosen. Nevertheless, a rapid drop in tars cracking efficiency was also estimated for this same material, so that an high frequency of catalysts regeneration and a consequent relevant air consumption for this operation were calculated in all of the cases. Other difficulties had to be overcome in the abatement of alkali metals, which condense at temperatures lower than tars, but they also need to be removed in the first sections of gas cleaning line in order to avoid corrosion of materials. In this case a dry scrubber technology was envisaged, by using the same fine particles filter units and by choosing for them corrosion resistant materials, like ceramic ones. Besides these two solutions which seem to be unavoidable in gas cleaning line design, high temperature gas cleaning lines were not possible to be achieved for the two larger plant sizes, as well. Indeed, as the use of temperature control devices was precluded in the adopted design procedure, ammonia partial oxidation units (as the only considered methods for the abatement of ammonia at high temperature) were not suitable for the large scale units, because of the high increase of reactors temperature by the exothermic reactions involved in the process. In spite of these limitations, yet, overall arrangements for each considered plant size were finally designed, so that the possibility to clean the gas up to the required standard degree was technically demonstrated, even in the case several contaminants are simultaneously present in the gas stream. Moreover, all the possible paths defined for the different plant sizes were compared each others on the basis of some defined operational parameters, among which total pressure drops, total energy losses, number of units and secondary materials consumption. On the basis of this analysis, dry gas cleaning methods proved preferable to the ones including water scrubber technology in al of the cases, especially because of the high water consumption provided by water scrubber units in ammonia adsorption process. This result is yet connected to the possibility to use activated carbon units for ammonia removal and Nahcolite adsorber for chloride acid. The very high efficiency of this latter material is also remarkable. Finally, as an estimation of the overall energy loss pertaining the gas cleaning process, the total enthalpy losses estimated for the three plant sizes were compared with the respective gas streams energy contents, these latter obtained on the basis of low heating value of gas only. This overall study on gas cleaning systems is thus proposed as an analytical tool by which different gas cleaning line configurations can be evaluated, according to the particular practical application they are adopted for and the size of cogeneration unit they are connected to.
Resumo:
At head of title: Department of Scientific and Industrial Research. Fuel Research.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
A procura de uma forma limpa de combustível, aliada à crescente instabilidade de preços dos combustíveis fósseis verificada nos mercados faz com que o hidrogénio se torne num combustível a considerar devido a não resultar qualquer produto poluente da sua queima e de se poder utilizar, por exemplo, desperdícios florestais cujo valor de mercado não está inflacionado por não pertencer à cadeia alimentar humana. Este trabalho tem como objetivo simular o processo de gasificação de biomassa para produção de hidrogénio utilizando um gasificador de leito fluidizado circulante. O oxigénio e vapor de água funcionam como agentes gasificantes. Para o efeito usou-se o simulador de processos químicos ASPEN Plus. A simulação desenvolvida compreende três etapas que ocorrem no interior do gasificador: pirólise, que foi simulada por um bloco RYIELD, combustão de parte dos compostos voláteis, simulada por um bloco RSTOIC e, por fim, as reações de oxidação e gasificação do carbonizado “char”, simuladas por um bloco RPLUG. Os valores de rendimento dos compostos após a pirólise, obtidos por uma correlação proposta por Gomez-Barea, et al. (2010), foram os seguintes: 20,33% “char”, 22,59% alcatrão, 36,90% monóxido de carbono, 16,05%m/m dióxido de carbono, 3,33% metano e 0,79% hidrogénio (% em massa). Como não foi possível encontrar valores da variação da composição do gás à saída do gasificador com a variação da temperatura, para o caso de vapor de água e oxigénio, optou-se por utilizar apenas vapor na simulação de forma a comparar os seus valores com os da literatura. Às temperaturas de 700, 770 e 820ºC, para um “steam-to-biomass ratio”, (SBR) igual a 0,5, os valores da percentagem molar de monóxido de carbono foram, respetivamente, 56,60%, 55,84% e 53,85%, os valores de hidrogénio foram, respetivamente, 17,83%, 18,25% e 19,31%, os valores de dióxido de carbono foram, respetivamente, 16,40%, 16,85% e 17,93% e os valores de metano foram, respetivamente, 9,00%, 8,95% e 8,83%. Os valores da composição à saída do gasificador, à temperatura de 820ºC, para um SBR de 0,5 foram: 53,85% de monóxido de carbono, 19,31% de hidrogénio, 17,93% de dióxido de carbono e 8,83% de metano (% em moles). Para um SBR de 0,7 a composição à saída foi de 54,45% de monóxido de carbono, 19,01% de hidrogénio, 17,59% de dióxido de carbono e 8,87% de metano. Por fim, quando SBR foi igual a 1 a composição do gás à saída foi de 55,08% de monóxido de carbono, 18,69% de hidrogénio, 17,24% de dióxido de carbono e 8,90% de metano. Os valores da composição obtidos através da simulação, para uma mistura de ar e vapor de água, ER igual a 0,26 e SBR igual a 1, foram: 34,00% de monóxido de carbono, 14,65% de hidrogénio, 45,81% de dióxido de carbono e 5,41% de metano. A simulação permitiu-nos ainda dimensionar o gasificador e determinar alguns parâmetros hidrodinâmicos do gasificador, considerando que a reação “water-gas shift” era a limitante, e que se pretendia obter uma conversão de 95%. A velocidade de operação do gasificador foi de 4,7m/s e a sua altura igual a 0,73m, para um diâmetro de 0,20m.