999 resultados para Retro-orbital Mass


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. Star activity makes the mass determination of CoRoT-7b and CoRoT 7c uncertain. Investigators of the CoRoT team proposed several solutions, but all but one of them are larger than the initial determinations of 4.8 +/- 0.8 M(Earth) for CoRoT-7b and 8.4 +/- 0.9 M(Earth) for CoRoT 7c. Aims. This investigation uses the excellent HARPS radial velocity measurements of CoRoT-7 to redetermine the planet masses and to explore techniques for determining mass and orbital elements of planets discovered around active stars when the relative variation in the radial velocity due to the star activity cannot be considered as just noise and can exceed the variation due to the planets. Methods. The main technique used here is a self-consistent version of the high-pass filter used by Queloz et al. (2009, A&A, 506, 303) in the first mass determination of CoRoT-7b and CoRoT-7c. The results are compared to those given by two alternative techniques: (1) the approach proposed by Hatzes et al. (2010, A&A, 520, A93) using only those nights in which two or three observations were done; (2) a pure Fourier analysis. In all cases, the eccentricities are taken equal to zero as indicated by the study of the tidal evolution of the system. The periods are also kept fixed at the values given by Queloz et al. Only the observations done in the time interval BJD 2 454 847-873 are used because they include many nights with multiple observations; otherwise, it is not possible to separate the effects of the rotation fourth harmonic (5.91 d = P(rot)/4) from the alias of the orbital period of CoRoT-7b (0.853585 d). Results. The results of the various approaches are combined to give planet mass values 8.0 +/- 1.2 M(Earth) for CoRoT-7b and 13.6 +/- 1.4 M(Earth) for CoRoT 7c. An estimation of the variation of the radial velocity of the star due to its activity is also given. Conclusions. The results obtained with three different approaches agree to give higher masses than those in previous determinations. From the existing internal structure models they indicate that CoRoT-7b is a much denser super-Earth. The bulk density is 11 +/- 3.5 g cm(-3), so CoRoT-7b may be rocky with a large iron core.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Dermoid cysts are frequent unilateral congenital benign tumors that can be found at different locations throughout the body. In the orbital region, dermoid cysts occur predominantly in the supero-temporal quadrant. However, different orbital locations are possible, making this entity an important differential diagnosis for orbital tumors. PATIENTS AND METHODS: We retrospectively reviewed the charts of 23 consecutive patients operated in our institution between 2005 and 2014 for orbital tumors that were diagnosed as congenital dermoid or epidermoid cysts. RESULTS: There were 21 dermoid and 2 epidermoid cysts. The median age at surgery time was 7 years (range 1-41). There were 15 females and 8 males. Eleven cysts were located supero-temporally (47.8%), seven supero-medially (30.4%), two temporally (8.7%), one at the frontal bone (4.4%) and two in the fossa of the lacrimal gland (8.7%). The mean cyst diameter was 13.1 mm±5.0 (SD). None had signs of malignant disease. No recurrence was observed after complete excision. CONCLUSION: Dermoid cysts of orbital region are mostly located in the supero-temporal quadrant. However, other orbital locations are possible and dermoid cysts must thus be considered in the differential diagnosis of any mass in the orbital region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fragmentation behavior of aryltin compounds [(p-ThAnis)nSnPh4.n (n=l-4); (p-ThAnis)3SnX (X=C1, Br, I); (o-CH30C6H4)3SnCl; Ph3Sn(o-pyr)] have been studied comparatively under EI and FAB ionization modes. Alkali halides were run under FAB mode. For the aryltin compounds, the effect of ligand type on the spectra have been explored in both EI and FAB modes. The fragmentation mechanisms have been examined with linked scans, such as fragment ion scans (B/E) and parent ion scans (B^/E). Ab Initio molecular orbital calculations were used to determine the structures of the fragments by comparing their relative stabilities. In the EI MS studies, negative ion EI mode has also been used for some of the aryltin compounds, to examine the possible ion molecule reactions under low pressures at 70eV. In the positive ion FAB MS studies, matrix optimization experiments have been carried out. Negative ion FAB experiments of all the compounds have been done in two different ways. Finally, the comparison of the two methods, EI MS and FAB MS, have been made.For alkali halides, the studies focused on the FAB MS behavior under different conditions. The intensities of cluster ions were reported, and the anomalies in the intensity distribution was also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Giant planets helped to shape the conditions we see in the Solar System today and they account for more than 99% of the mass of the Sun’s planetary system. They can be subdivided into the Ice Giants (Uranus and Neptune) and the Gas Giants (Jupiter and Saturn), which differ from each other in a number of fundamental ways. Uranus, in particular is the most challenging to our understanding of planetary formation and evolution, with its large obliquity, low self-luminosity, highly asymmetrical internal field, and puzzling internal structure. Uranus also has a rich planetary system consisting of a system of inner natural satellites and complex ring system, five major natural icy satellites, a system of irregular moons with varied dynamical histories, and a highly asymmetrical magnetosphere. Voyager 2 is the only spacecraft to have explored Uranus, with a flyby in 1986, and no mission is currently planned to this enigmatic system. However, a mission to the uranian system would open a new window on the origin and evolution of the Solar System and would provide crucial information on a wide variety of physicochemical processes in our Solar System. These have clear implications for understanding exoplanetary systems. In this paper we describe the science case for an orbital mission to Uranus with an atmospheric entry probe to sample the composition and atmospheric physics in Uranus’ atmosphere. The characteristics of such an orbiter and a strawman scientific payload are described and we discuss the technical challenges for such a mission. This paper is based on a white paper submitted to the European Space Agency’s call for science themes for its large-class mission programme in 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We perform a statistical study of the process of orbital determination of the HD82943 extrasolar planetary system, using the current observational data set of N = 165 radial velocity (RV) measurements. Our aim is to analyse the dispersion of possible orbital fits leading to residuals compatible with the best solution, and to discuss the sensitivity of the results with respect to both the data set and the error distribution around the best fit. Although some orbital parameters (e.g. semimajor axis) appear well constrained, we show that the best fits for the HD82943 system are not robust, and at present it is not possible to estimate reliable solutions for these bodies. Finally, we discuss the possibility of a third planet, with a mass of 0.35M(Jup) and an orbital period of 900 d. Stability analysis and simulations of planetary migration indicate that such a hypothetical three-planet system could be locked in a double 2/1 mean-motion resonance, similar to the so-called Laplace resonance of the three inner Galilean satellites of Jupiter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the stability regions and families of periodic orbits of two planets locked in a co-orbital configuration. We consider different ratios of planetary masses and orbital eccentricities; we also assume that both planets share the same orbital plane. Initially, we perform numerical simulations over a grid of osculating initial conditions to map the regions of stable/chaotic motion and identify equilibrium solutions. These results are later analysed in more detail using a semi-analytical model. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L(4) and L(5), we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (delta lambda, delta pi) = (+/- 60 degrees, -/+ 120 degrees), where delta lambda is the difference in mean longitudes and delta pi is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as similar to 0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We estimate the conditions for detectability of two planets in a 2/1 mean-motion resonance from radial velocity data, as a function of their masses, number of observations and the signal-to-noise ratio. Even for a data set of the order of 100 observations and standard deviations of the order of a few meters per second, we find that Jovian-size resonant planets are difficult to detect if the masses of the planets differ by a factor larger than similar to 4. This is consistent with the present population of real exosystems in the 2/1 commensurability, most of which have resonant pairs with similar minimum masses, and could indicate that many other resonant systems exist, but are currently beyond the detectability limit. Furthermore, we analyze the error distribution in masses and orbital elements of orbital fits from synthetic data sets for resonant planets in the 2/1 commensurability. For various mass ratios and number of data points we find that the eccentricity of the outer planet is systematically overestimated, although the inner planet`s eccentricity suffers a much smaller effect. If the initial conditions correspond to small-amplitude oscillations around stable apsidal corotation resonances, the amplitudes estimated from the orbital fits are biased toward larger amplitudes, in accordance to results found in real resonant extrasolar systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The determination of a specific orbit and the procedure to calculate orbital maneuvers of artificial satellites are problems of extreme importance in the study of orbital mechanics. Therefore, the transferring problem of a spaceship from one orbit to another, and the attention due to this subject has in increased during the last years. Many applications can be found in several space activities, for example, to put a satellite in a geostationary orbit, to change the position of a spaceship, to maintain a specific satellite's orbit, in the design of an interplanetary mission, and others. The Brazilian Satellite SCD-1 (Data Collecting Satellite) will be used as example in this paper. It is the first satellite developed entirely in Brazil, and it remains in operation to this date. SCD-1 was designed, developed, built, and tested by Brazilian scientists, engineers, and technicians working at INPE (National Institute for Space Research, and in Brazilian Industries. During the lifetime, it might be necessary do some complementary maneuvers, being this one either an orbital transferring, or just to make periodical corrections. The purpose of transferring problem is to change the position, velocity and the satellite's mass to a new pre determined state. This transfer can be totally linked (in the case of "Rendezvous") or partially free (free time, free final velocity, etc). In the global case, the direction, the orientation and the magnitude of the thrust to be applied must be chosen, respecting the equipment's limit. In order to make this transferring, either sub-optimal or optimal maneuvers may be used. In the present study, only the sub-optimal will be shown. Hence, this method will simplify the direction of thrust application, to allow a fast calculation that may be used in real time, with a very fast processing. The thrust application direction to be applied will be assumed small and constant, and the purpose of this paper is to find the time interval that the thrust is applied. This paper is basically divided into three parts: during the first one the sub-optimal maneuver is explained and detailed, the second presents the Satellite SCD-1, and finally the last part shows the results using the sub-optimal maneuver applied to the Brazilian Satellite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims. We study trajectories of planetesimals whose orbits decay due to gas drag in a primordial solar nebula and are perturbed by the gravity of the secondary body on an eccentric orbit whose mass ratio takes values from mu(2) = 10(-7) to mu(2) = 10(-3) increasing ten times at each step. Each planetesimal ultimately suffers one of the three possible fates: (1) trapping in a mean motion resonance with the secondary body; (2) collision with the secondary body and consequent increase of its mass; or (3) diffusion after crossing the orbit of the secondary body.Methods. We take the Burlirsh-Stoer numerical algorithm in order to integrate the Newtonian equations of the planar, elliptical restricted three-body problem with the secondary body and the planetesimal orbiting the primary. It is assumed that there is no interaction among planetesimals, and also that the gas does not affect the orbit of the secondary body.Results. The results show that the optimal value of the gas drag constant k for the 1: 1 resonance is between 0.9 and 1.25, representing a meter size planetesimal for each AU of orbital radius. In this study, the conditions of the gas drag are such that in theory, L4 no longer exists in the circular case for a critical value of k that defines a limit size of the planetesimal, but for a secondary body with an eccentricity larger than 0.05 when mu(2) = 10(-6), it reappears. The decrease of the cutoff collision radius increase the difusions but does not affect the distribution of trapping. The contribution to the mass accretion of the secondary body is over 40% with a collision radius 0.05R(Hill) and less than 15% with 0.005R(Hill) for mu(2) = 10(-7). The trappings no longer occur when the drag constant k reachs 30. That means that the size limit of planetesimal trapping is 0.2 m per AU of orbital radius. In most cases, this accretion occurs for a weak gas drag and small secondary eccentricity. The diffusions represent most of the simulations showing that gas drag is an efficient process in scattering planetesimals and that the trapping of planetesimals in the 1: 1 resonance is a less probable fate. These results depend on the specific drag force chosen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. Meningeal melanocytoma generally occurs in the posterior fossa. Orbital manifestation is rarely encountered.Methods. A thirty-five year-old man presented with progressive proptosis of his right eye. Computed tomography (CT) and Magnetic Resonance Imaging (MRI) of the brain showed an expansive intraconal mass lesion occupying the superior orbital compartment, the entire orbital apex, and the optic foramen. Histological analysis and Immunohistochical staining for S-100 and HMB-45 monoclonal antibodies confirmed melanocytoma.Findings. Microsurgical removal was accomplished through a fronto-orbital craniotomy. Chemotherapy and irradiation followed the initial intervention. The patient returned for follow up two years after surgery, complaining of headache and right visual loss. A subfrontal tumor with massive edema was found on follow up CT scan.Interpretation. Meningeal melanocytomas are rare benign pigmented tumors of the central nervous system. They are predominant in the posterior fossa and spinal cord and frequently mistaken for melanomas, especially on frozen sections. Orbital presentation is rare. The natural history is poorly defined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(10) Hygiea is the fourth largest asteroid of the main belt, by volume and mass, and it is the largest member of its family, that is made mostly by low-albedo, C-type asteroids, typical of the outer main belt. Like many other large families, it is associated with a 'halo' of objects, that extends far beyond the boundary of the core family, as detected by traditional hierarchical clustering methods (HCM) in proper element domains. Numerical simulations of the orbital evolution of family members may help in estimating the family and halo family age, and the original ejection velocity field. But, in order to minimize the errors associated with including too many interlopers, it is important to have good estimates of family membership that include available data on local asteroid taxonomy, geometrical albedo and local dynamics. For this purpose, we obtained synthetic proper elements and frequencies of asteroids in the Hygiea orbital region, with their errors. We revised the current knowledge on asteroid taxonomy, including Sloan Digital Sky Survey-Moving Object Catalog 4th release (SDSS-MOC 4) data, and geometric albedo data from Wide-field Infrared Survey Explorer (WISE) and Near-Earth Object WISE (NEOWISE). We identified asteroid family members using HCM in the domain of proper elements (a, e, sin (i)) and in the domains of proper frequencies most appropriate to study diffusion in the local web of secular resonances, and eliminated possible interlopers based on taxonomic and geometrical albedo considerations. To identify the family halo, we devised a new hierarchical clustering method in an extended domain that includes proper elements, principal components PC1, PC2 obtained based on SDSS photometric data and, for the first time, WISE and NEOWISE geometric albedo. Data on asteroid size distribution, light curves and rotations were also revised for the Hygiea family. The Hygiea family is the largest group in its region, with two smaller families in proper element domain and 18 families in various frequencies domains identified in this work for the first time. Frequency groups tend to extend vertically in the (a, sin (i)) plane and cross not only the Hygiea family but also the near C-type families of Themis and Veritas, causing a mixture of objects all of relatively low albedo in the Hygiea family area. A few high-albedo asteroids, most likely associated with the Eos family, are also present in the region. Finally, the new multidomains hierarchical clustering method allowed us to obtain a good and robust estimate of the membership of the Hygiea family halo, quite separated from other asteroids families halo in the region, and with a very limited (about 3 per cent) presence of likely interlopers. © 2013 The Author Published by Oxford University Press on behalf of the Royal Astronomical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)