952 resultados para Retaining wall. Instrumentation. Anchors
Resumo:
Retaining walls design involves factors such as plastification, loading and unloading, pre-stressing, excessive displacements and earth and water thrust. Furthermore, the interaction between the retained soil and the structure is rather complex and hard to predict. Despite the advances in numerical simulation techniques and monitoring of forces and displacements with field instrumentation, design projects are still based on classical methods, whose simplifying assumptions may overestimate structural elements of the retaining wall. This dissertation involves a three-dimensional numerical study on the behavior of a retaining wall using the finite element method (FEM). The retaining wall structure is a contiguous bored pile wall with tie-back anchors. The numerical results were compared to data obtained from field instrumentation. The influence of the position of one or two layers of anchors and the effects of the construction of a slab bounded at the top of the retaining wall was evaluated. Furthermore, this study aimed at investigating the phenomenon of arching in the soil behind the wall. Arching was evaluated by analyzing the effects of pile spacing on horizontal stresses and displacements. Parametric analysis with one layers of anchors showed that the smallest horizontal displacements of the structure were achieved for between 0.3 and 0.5 times the excavation depth. Parametric analyses with two anchor layers showed that the smallest horizontal displacements were achieve for anchors positioned in depths of 0.4H and 0.7H. The construction of a slab at the top of the retaining wall decreased the horizontal displacements by 0.14% times the excavation depth as compared to analyses without the slab. With regard to the arching , analyzes showed an optimal range of spacing between the faces of the piles between 0.4 and 0.6 times the diameter of the pile
Resumo:
In this paper the use of probability theory in reliability based optimum design of reinforced gravity retaining wall is described. The formulation for computing system reliability index is presented. A parametric study is conducted using advanced first order second moment method (AFOSM) developed by Hasofer-Lind and Rackwitz-Fiessler (HL-RF) to asses the effect of uncertainties in design parameters on the probability of failure of reinforced gravity retaining wall. Totally 8 modes of failure are considered, viz overturning, sliding, eccentricity, bearing capacity failure, shear and moment failure in the toe slab and heel slab. The analysis is performed by treating back fill soil properties, foundation soil properties, geometric properties of wall, reinforcement properties and concrete properties as random variables. These results are used to investigate optimum wall proportions for different coefficients of variation of φ (5% and 10%) and targeting system reliability index (βt) in the range of 3 – 3.2.
Resumo:
No presente trabalho apresentam-se estudos desenvolvidos com o objetivo de análise, conceção e dimensionamento de sistemas de escoramentos metálicos modulares e reaproveitáveis a usar como alternativa técnica e económica em estruturas de contenção periférica. O sistema concebido aplicouse a um caso concreto de uma escavação urbana executada no centro de Luanda, Angola. O projeto começou a ser estudado tendo em conta os estudos geológicos e geotécnicos do terreno em causa, e posteriormente foi estudada a solução construtiva elaborada. Feito o estudo sobre a obra que se realizou com uma parede moldada e ancoragens pré-esforçadas, foi possível, a partir dai, elaborar estudos com outro tipo de sistemas de apoio. Assim, realizaram-se estudos para sistemas de apoio com escoramento linear; colunas metálicas e por uma treliça. Posteriormente, de forma a completar, complementar e poder comparar toda a pesquisa, foram efetuados mais quatro estudos, sendo os sistemas de apoio constituídos por colunas metálicas e/ou tubos circulares ou retangulares em forma elíptica no terreno do projeto e num terreno em forma de quadrado perfeito. Através dos vários estudos foi possível comparar os resultados e perceber qual será a melhor forma de otimização para futuras obras. Foi gerado um método de escoramento, que é possível ser utilizado tendo em conta as particularidades de cada obra, constituído por perfis metálicos com dimensões standard formando elipses ou círculos, conforme a forma do terreno. De maneira a finalizar este projeto foram estudados vários tipos de ligações, quer entre perfis, quer para os perfis e a parede, como também os perfis e os apoios verticais, caso sejam necessários. Como conclusão, e de forma expedita foi analisado o custo direto que apenas abrange a quantidade de aço utilizada para cada tipo de apoio dimensionado, comparando a escavação do projeto em causa com a escavação quadrada.
Resumo:
Gabion faced re.taining walls are essentially semi rigid structures that can generally accommodate large lateral and vertical movements without excessive structural distress. Because of this inherent feature, they offer technical and economical advantage over the conventional concrete gravity retaining walls. Although they can be constructed either as gravity type or reinforced soil type, this work mainly deals with gabion faced reinforced earth walls as they are more suitable to larger heights. The main focus of the present investigation was the development of a viable plane strain two dimensional non linear finite element analysis code which can predict the stress - strain behaviour of gabion faced retaining walls - both gravity type and reinforced soil type. The gabion facing, backfill soil, In - situ soil and foundation soil were modelled using 20 four noded isoparametric quadrilateral elements. The confinement provided by the gabion boxes was converted into an induced apparent cohesion as per the membrane correction theory proposed by Henkel and Gilbert (1952). The mesh reinforcement was modelled using 20 two noded linear truss elements. The interactions between the soil and the mesh reinforcement as well as the facing and backfill were modelled using 20 four noded zero thickness line interface elements (Desai et al., 1974) by incorporating the nonlinear hyperbolic formulation for the tangential shear stiffness. The well known hyperbolic formulation by Ouncan and Chang (1970) was used for modelling the non - linearity of the soil matrix. The failure of soil matrix, gabion facing and the interfaces were modelled using Mohr - Coulomb failure criterion. The construction stages were also modelled.Experimental investigations were conducted on small scale model walls (both in field as well as in laboratory) to suggest an alternative fill material for the gabion faced retaining walls. The same were also used to validate the finite element programme developed as a part of the study. The studies were conducted using different types of gabion fill materials. The variation was achieved by placing coarse aggregate and quarry dust in different proportions as layers one above the other or they were mixed together in the required proportions. The deformation of the wall face was measured and the behaviour of the walls with the variation of fill materials was analysed. It was seen that 25% of the fill material in gabions can be replaced by a soft material (any locally available material) without affecting the deformation behaviour to large extents. In circumstances where deformation can be allowed to some extents, even up to 50% replacement with soft material can be possible.The developed finite element code was validated using experimental test results and other published results. Encouraged by the close comparison between the theory and experiments, an extensive and systematic parametric study was conducted, in order to gain a closer understanding of the behaviour of the system. Geometric parameters as well as material parameters were varied to understand their effect on the behaviour of the walls. The final phase of the study consisted of developing a simplified method for the design of gabion faced retaining walls. The design was based on the limit state method considering both the stability and deformation criteria. The design parameters were selected for the system and converted to dimensionless parameters. Thus the procedure for fixing the dimensions of the wall was simplified by eliminating the conventional trial and error procedure. Handy design charts were developed which would prove as a hands - on - tool to the design engineers at site. Economic studies were also conducted to prove the cost effectiveness of the structures with respect to the conventional RCC gravity walls and cost prediction models and cost breakdown ratios were proposed. The studies as a whole are expected to contribute substantially to understand the actual behaviour of gabion faced retaining wall systems with particular reference to the lateral deformations.
Resumo:
El empleo de los micropilotes en la ingeniería civil ha revolucionado las técnicas de estabilización de terraplenes a media ladera, ya que aunque los pilotes pueden ser la opción más económica, el uso de micropilotes permite llegar a sitios inaccesibles con menor coste de movimientos de tierras, realización de plataformas de trabajo de dimensiones reducidas, maquinaria necesaria es mucho más pequeña, liviana y versátil en su uso, incluyendo la posibilidad de situar la fabricación de morteros o lechadas a distancias de varias decenas de metros del elemento a ejecutar. Sin embargo, realizando una revisión de la documentación técnica que se tiene en el ámbito ingenieril, se comprobó que los sistemas de diseño de algunos casos (micropilotes en terraplenes a media ladera, micropilotes en pantallas verticales, micropilotes como “paraguas” en túneles, etc.) eran bastante deficientes o poco desarrollados. Premisa que permite concluir que el constructor ha ido por delante (como suele ocurrir en ingeniería geotécnica) del cálculo o de su análisis teórico. Del mismo modo se determinó que en su mayoría los micropilotes se utilizan en labores de recalce o como nueva solución de cimentación en condiciones de difícil acceso, casos en los que el diseño de los micropilotes viene definido por cargas axiales, de compresión o de tracción, consideraciones que se contemplan en reglamentaciones como la “Guía para el proyecto y la ejecución de micropilotes en obras de carretera” del Ministerio de Fomento. En los micropilotes utilizados para estabilizar terraplenes a media ladera y micropilotes actuando como muros pantalla, en los que éstos trabajan a esfuerzo cortante y flexión, no se dispone de sistemas de análisis fiables o no se introduce adecuadamente el problema de interacción terreno-micropilote. Además en muchos casos, los parámetros geotécnicos que se utilizan no tienen una base técnico-teórica adecuada por lo que los diseños pueden quedar excesivamente del lado de la seguridad, en la mayoría de los casos, o todo lo contrario. Uno de los objetivos principales de esta investigación es estudiar el comportamiento de los micropilotes que están sometidos a esfuerzos de flexión y cortante, además de otros objetivos de gran importancia que se describen en el apartado correspondiente de esta tesis. Cabe indicar que en este estudio no se ha incluido el caso de micropilotes quasi-horizontales trabajando a flexion (como los “paraguas” en túneles), por considerarse que estos tienen un comportamiento y un cálculo diferente, que está fuera del alcance de esta investigación. Se ha profundizado en el estudio del empleo de micropilotes en taludes, presentando casos reales de obras ejecutadas, datos estadísticos, problemas de diseño y ejecución, métodos de cálculo simplificados y modelación teórica en cada caso, efectuada mediante el empleo de elementos finitos con el Código Plaxis 2D. Para llevar a cabo los objetivos que se buscan con esta investigación, se ha iniciado con el desarrollo del “Estado del Arte” que ha permitido establecer tipología, aplicaciones, características y cálculo de los micropilotes que se emplean habitualmente. Seguidamente y a efectos de estudiar el problema dentro de un marco geotécnico real, se ha seleccionado una zona española de actuación, siendo ésta Andalucía, en la que se ha utilizado de manera muy importante la técnica de micropilotes sobre todo en problemas de estabilidad de terraplenes a media ladera. A partir de ahí, se ha realizado un estudio de las propiedades geotécnicas de los materiales (principalmente suelos y rocas muy blandas) que están presentes en esta zona geográfica, estudio que ha sido principalmente bibliográfico o a partir de la experiencia en la zona del Director de esta tesis. Del análisis realizado se han establecido ordenes de magnitud de los parámetros geotécnicos, principalmente la cohesión y el ángulo de rozamiento interno (además del módulo de deformación aparente o de un módulo de reacción lateral equivalente) para los diversos terrenos andaluces. Con el objeto de conocer el efecto de la ejecución de un micropilote en el terreno (volumen medio real del micropilote, una vez ejecutado; efecto de la presión aplicada en las propiedades del suelo circundante, etc.) se ha realizado una encuesta entre diversas empresas españolas especializadas en la técnica de los micropilotes, a efectos de controlar los volúmenes de inyección y las presiones aplicadas, en función de la deformabilidad del terreno circundante a dichos micropilotes, con lo que se ha logrado definir una rigidez a flexión equivalente de los mismos y la definición y características de una corona de terreno “mejorado” lograda mediante la introducción de la lechada y el efecto de la presión alrededor del micropilote. Con las premisas anteriores y a partir de los parámetros geotécnicos determinados para los terrenos andaluces, se ha procedido a estudiar la estabilidad de terraplenes apoyados sobre taludes a media ladera, mediante el uso de elementos finitos con el Código Plaxis 2D. En el capítulo 5. “Simulación del comportamiento de micropilotes estabilizando terraplenes”, se han desarrollado diversas simulaciones. Para empezar se simplificó el problema simulando casos similares a algunos reales en los que se conocía que los terraplenes habían llegado hasta su situación límite (de los que se disponía información de movimientos medidos con inclinómetros), a partir de ahí se inició la simulación de la inestabilidad para establecer el valor de los parámetros de resistencia al corte del terreno (mediante un análisis retrospectivo – back-análisis) comprobando a su vez que estos valores eran similares a los deducidos del estudio bibliográfico. Seguidamente se han introducido los micropilotes en el borde de la carretera y se ha analizado el comportamiento de éstos y del talud del terraplén (una vez construidos los micropilotes), con el objeto de establecer las bases para su diseño. De este modo y adoptando los distintos parámetros geotécnicos establecidos para los terrenos andaluces, se simularon tres casos reales (en Granada, Málaga y Ceuta), comparando los resultados de dichas simulaciones numéricas con los resultados de medidas reales de campo (desplazamientos del terreno, medidos con inclinómetros), obteniéndose una reproducción bastante acorde a los movimientos registrados. Con las primeras simulaciones se concluye que al instalar los micropilotes la zona más insegura de la ladera es la de aguas abajo. La superficie de rotura ya no afecta a la calzada que protegen los micropilotes. De ahí que se deduzca que esta solución sea válida y se haya aplicado masivamente en Andalucía. En esas condiciones, podría decirse que no se está simulando adecuadamente el trabajo de flexión de los micropilotes (en la superficie de rotura, ya que no les corta), aunque se utilicen elementos viga. Por esta razón se ha realizado otra simulación, basada en las siguientes hipótesis: − Se desprecia totalmente la masa potencialmente deslizante, es decir, la que está por delante de la fila exterior de micros. − La estratigrafía del terreno es similar a la considerada en las primeras simulaciones. − La barrera de micropilotes está constituida por dos elementos inclinados (uno hacia dentro del terraplén y otro hacia fuera), con inclinación 1(H):3(V). − Se puede introducir la rigidez del encepado. − Los micros están separados 0,556 m ó 1,00 m dentro de la misma alineación. − El empotramiento de los micropilotes en el sustrato resistente puede ser entre 1,5 y 7,0 m. Al “anular” el terreno que está por delante de los micropilotes, a lo largo del talud, estos elementos empiezan claramente a trabajar, pudiendo deducirse los esfuerzos de cortante y de flexión que puedan actuar sobre ellos (cota superior pero prácticamente muy cerca de la solución real). En esta nueva modelación se ha considerado tanto la rigidez equivalente (coeficiente ϴ) como la corona de terreno tratado concéntrico al micropilote. De acuerdo a esto último, y gracias a la comparación de estas modelaciones con valores reales de movimientos en laderas instrumentadas con problemas de estabilidad, se ha verificado que existe una similitud bastante importante entre los valores teóricos obtenidos y los medidos en campo, en relación al comportamiento de los micropilotes ejecutados en terraplenes a media ladera. Finalmente para completar el análisis de los micropilotes trabajando a flexión, se ha estudiado el caso de micropilotes dispuestos verticalmente, trabajando como pantallas discontinuas provistas de anclajes, aplicado a un caso real en la ciudad de Granada, en la obra “Hospital de Nuestra Señora de la Salud”. Para su análisis se utilizó el código numérico CYPE, basado en que la reacción del terreno se simula con muelles de rigidez Kh o “módulo de balasto” horizontal, introduciendo en la modelación como variables: a) Las diferentes medidas obtenidas en campo; b) El espesor de terreno cuaternario, que por lo que se pudo determinar, era variable, c) La rigidez y tensión inicial de los anclajes. d) La rigidez del terreno a través de valores relativos de Kh, recopilados en el estudio de los suelos de Andalucía, concretamente en la zona de Granada. Dicha pantalla se instrumentó con 4 inclinómetros (introducidos en los tubos de armadura de cuatro micropilotes), a efectos de controlar los desplazamientos horizontales del muro de contención durante las excavaciones pertinentes, a efectos de comprobar la seguridad del conjunto. A partir del modelo de cálculo desarrollado, se ha comprobado que el valor de Kh pierde importancia debido al gran número de niveles de anclajes, en lo concerniente a las deformaciones horizontales de la pantalla. Por otro lado, los momentos flectores son bastante sensibles a la distancia entre anclajes, al valor de la tensión inicial de los mismos y al valor de Kh. Dicho modelo también ha permitido reproducir de manera fiable los valores de desplazamientos medidos en campo y deducir los parámetros de deformabilidad del terreno, Kh, con valores del orden de la mitad de los medidos en el Metro Ligero de Granada, pero visiblemente superiores a los deducibles de ábacos que permiten obtener Kh para suelos granulares con poca cohesión (gravas y cuaternario superior de Sevilla) como es el caso del ábaco de Arozamena, debido, a nuestro juicio, a la cementación de los materiales presentes en Granada. En definitiva, de las anteriores deducciones se podría pensar en la optimización del diseño de los micropilotes en las obras que se prevean ejecutar en Granada, con similares características al caso de la pantalla vertical arriostrada mediante varios niveles de anclajes y en las que los materiales de emplazamiento tengan un comportamiento geotécnico similar a los estudiados, con el consiguiente ahorro económico. Con todo ello, se considera que se ha hecho una importante aportación para el diseño de futuras obras de micropilotes, trabajando a flexión y cortante, en obras de estabilización de laderas o de excavaciones. Using micropiles in civil engineering has transformed the techniques of stabilization of embankments on the natural or artificial slopes, because although the piles may be the cheapest option, the use of micropiles can reach inaccessible places with lower cost of earthworks, carrying out small work platforms. Machinery used is smaller, lightweight and versatile, including the possibility of manufacturing mortars or cement grouts over distances of several tens of meters of the element to build. However, making a review of the technical documentation available in the engineering field, it was found that systems designed in some cases (micropiles in embankments on the natural slopes, micropiles in vertical cut-off walls, micropiles like "umbrella" in tunnels, etc.) were quite poor or underdeveloped. Premise that concludes the builder has gone ahead (as usually happen in geotechnical engineering) of calculation or theoretical analysis. In the same way it was determined that most of the micropiles are used in underpinning works or as a new foundation solution in conditions of difficult access, in which case the design of micropiles is defined by axial, compressive or tensile loads, considered in regulations as the " Handbook for the design and execution of micropiles in road construction" of the Ministry of Development. The micropiles used to stabilize embankments on the slopes and micropiles act as retaining walls, where they work under shear stress and bending moment, there are not neither reliable systems analysis nor the problem of soil-micropile interaction are properly introduced. Moreover, in many cases, the geotechnical parameters used do not have a proper technical and theoretical basis for what designs may be excessively safe, or the opposite, in most cases. One of the main objectives of this research is to study the behavior of micro piles which are subjected to bending moment and shear stress, as well as other important objectives described in the pertinent section of this thesis. It should be noted that this study has not included the case of quasi-horizontal micropiles working bending moment (as the "umbrella" in tunnels), because it is considered they have a different behavior and calculation, which is outside the scope of this research. It has gone in depth in the study of using micropiles on slopes, presenting real cases of works made, statistics, problems of design and implementation, simplified calculation methods and theoretical modeling in each case, carried out by using FEM (Finite Element Method) Code Plaxis 2D. To accomplish the objectives of this research, It has been started with the development of the "state of the art" which stipulate types, applications, characteristics and calculation of micropiles that are commonly used. In order to study the problem in a real geotechnical field, it has been selected a Spanish zone of action, this being Andalusia, in which it has been used in a very important way, the technique of micropiles especially in embankments stability on natural slopes. From there, it has made a study of the geotechnical properties of the materials (mainly very soft soils and rocks) that are found in this geographical area, which has been mainly a bibliographic study or from the experience in the area of the Director of this thesis. It has been set orders of magnitude of the geotechnical parameters from analyzing made, especially the cohesion and angle of internal friction (also apparent deformation module or a side reaction module equivalent) for various typical Andalusian ground. In order to determine the effect of the implementation of a micropile on the ground (real average volume of micropile once carried out, effect of the pressure applied on the properties of the surrounding soil, etc.) it has conducted a survey among various skilled companies in the technique of micropiles, in order to control injection volumes and pressures applied, depending on the deformability of surrounding terrain such micropiles, whereby it has been possible to define a bending stiffness and the definition and characteristics of a crown land "improved" achieved by introducing the slurry and the effect of the pressure around the micropile. With the previous premises and from the geotechnical parameters determined for the Andalusian terrain, we proceeded to study the stability of embankments resting on batters on the slope, using FEM Code Plaxis 2D. In the fifth chapter "Simulation of the behavior of micropiles stabilizing embankments", there were several different numerical simulations. To begin the problem was simplified simulating similar to some real in which it was known that the embankments had reached their limit situation (for which information of movements measured with inclinometers were available), from there the simulation of instability is initiated to set the value of the shear strength parameters of the ground (by a retrospective analysis or back-analysis) checking these values were similar to those deduced from the bibliographical study Then micropiles have been introduced along the roadside and its behavior was analyzed as well as the slope of embankment (once micropiles were built ), in order to establish the basis for its design. In this way and taking the different geotechnical parameters for the Andalusian terrain, three real cases (in Granada, Malaga and Ceuta) were simulated by comparing the results of these numerical simulations with the results of real field measurements (ground displacements measured with inclinometers), getting quite consistent information according to registered movements. After the first simulations it has been concluded that after installing the micropiles the most insecure area of the natural slope is the downstream. The failure surface no longer affects the road that protects micropiles. Hence it is inferred that this solution is acceptable and it has been massively applied in Andalusia. Under these conditions, one could say that it is not working properly simulating the bending moment of micropiles (on the failure surface, and that does not cut them), although beam elements are used. Therefore another simulation was performed based on the following hypotheses: − The potentially sliding mass is totally neglected, that is, which is ahead of the outer row of micropiles. − Stratigraphy field is similar to the one considered in the first simulations. − Micropiles barrier is constituted by two inclined elements (one inward and one fill out) with inclination 1 (H): 3 (V). − You can enter the stiffness of the pile cap. − The microlies lines are separated 0.556 m or 1.00 m in the same alignment. − The embedding of the micropiles in the tough substrate can be between 1.5 and 7.0 m. To "annul" the ground that is in front of the micro piles, along the slope, these elements clearly start working, efforts can be inferred shear stress and bending moment which may affect them (upper bound but pretty close to the real) solution. In this new modeling it has been considered both equivalent stiffness coefficient (θ) as the treated soil crown concentric to the micropile. According to the latter, and by comparing these values with real modeling movements on field slopes instrumented with stability problems, it was verified that there is quite a significant similarity between the obtained theoretical values and the measured field in relation to the behavior of micropiles executed in embankments along the natural slope. Finally to complete the analysis of micropiles working in bending conditions, we have studied the case of micropiles arranged vertically, working as discontinued cut-off walls including anchors, applied to a real case in the city of Granada, in the play "Hospital of Our Lady of the Health ". CYPE numeric code, based on the reaction of the ground is simulated spring stiffness Kh or "subgrade" horizontal, introduced in modeling was used as variables for analysis: a) The different measurements obtained in field; b) The thickness of quaternary ground, so that could be determined, was variable, c) The stiffness and the prestress of the anchors. d) The stiffness of the ground through relative values of Kh, collected in the study of soils in Andalusia, particularly in the area of Granada. (previously study of the Andalusia soils) This cut-off wall was implemented with 4 inclinometers (introduced in armor tubes four micropiles) in order to control the horizontal displacements of the retaining wall during the relevant excavations, in order to ensure the safety of the whole. From the developed model calculation, it was found that the value of Kh becomes less important because a large number of anchors levels, with regard to the horizontal deformation of the cut-off wall. On the other hand, the bending moments are quite sensitive to the distance between anchors, the initial voltage value thereof and the value of Kh. This model has also been reproduced reliably displacement values measured in the field and deduce parameters terrain deformability, Kh, with values around half the measured Light Rail in Granada, but visibly higher than deductible of abacuses which can obtain Kh for granular soils with low cohesion (upper Quaternary gravels and Sevilla) such as Abacus Arozamena, because, in our view, to cementing materials in Granada. In short, previous deductions you might think on optimizing the design of micropiles in the works that are expected to perform in Granada, with similar characteristics to the case of the vertical cut-off wall braced through several levels of anchors and in which materials location have a geotechnical behavior similar to those studied, with the consequent economic savings. With all this, it is considered that a significant contribution have been made for the design of future works of micropiles, bending moment and shear stress working in slope stabilization works or excavations.
Resumo:
O presente trabalho, no âmbito de projeto final de curso de metrado em Engenharia da Construção, teve como objetivo o estudo do comportamento de estruturas de suporte de terras flexíveis multi-apoiadas (com diferentes tipos de apoio) para dois tipos solos homogéneos. Recorreu-se às teorias clássicas, como a de Rankine, desenvolvidas para estruturas de suporte de terras rígidas. Às teorias semi-empíricas de Terzaghi & Peck que culminaram nos diagramas de Terzaghi & Peck. Apesar de os digramas de Terzaghi & Peck serem diagramas de pressões de terras a usar em estruturas de suporte de terras flexíveis, apresentam algumas limitações importantes, como a sua aplicação apenas em solos heterogéneos, com presença ou não de níveis freáticos, e sem fornecer distribuição das pressões de terras na zona passiva (zona enterrada). Como na atualidade os modelos de elementos finitos permitem simular de modo muito mais rigoroso os problemas da engenharia. O presente trabalho esteve focado em analisar um caso prático em diferentes solos e com diferentes tipos de apoios. Será estudado mediante os métodos analíticos usando as teorias clássicas e posteriormente métodos numéricos (com diferentes programas de cálculo). Finalmente serão comparados os resultados obtidos mediante os diferentes métodos usados. As estruturas foram inicialmente pré-dimensionadas usando os métodos clássicos. Assim foram usados os diagramas de pressões de terras de Terzaghi & Peck para a zona ativa (zona em escavação) e a teoria de Rankine para conhecer as pressões de terras na zona enterrada da cortina (parede moldada) e recorrendo ao software Ftool para a obtenção dos parâmetros de dimensionamento de estruturas de suporte de terras objeto de estudo. Posteriormente utilizaram-se os programas de cálculo automático CYPE 2015 k, e o programa de cálculo de elementos finitos PLAXIS Introductory 2010. Estes programas permitem simular o faseamento construtivo do muro. Para estudar a influência de algúns parâmetros no comportamento da Resumo IV cortina o estudo foi realizado com dois solos distintos, um solo argiloso mole e um solo arenoso denso. Assim como para dois tipos de apoios distintos, ancoragens ativas e escoras passivas. Foram analisados diferentes parâmetros na estrutura de suporte; pressões horizontais das terras, deslocamentos horizontais, esforço axial, transverso e momento fletor.
Resumo:
Retaining walls are important assets in the transportation infrastructure and assessing their condition is important to prolong their performance and ultimately their design life. Retaining walls are often overlooked and only a few transportation asset management programs consider them in their inventory. Because these programs are few, the techniques used to assess their condition focus on a qualitative assessment as opposed to a quantitative approach. The work presented in this thesis focuses on using photogrammetry to quantitatively assess the condition of retaining walls. Multitemporal photogrammetry is used to develop 3D models of the retaining walls, from which offset displacements are measured to assess their condition. This study presents a case study from a site along M-10 highway in Detroit, MI were several sections of retaining walls have experienced horizontal displacement towards the highway. The results are validated by comparing with field observations and measurements. The limitations of photogrammetry were also studied by using a small scale model in the laboratory. The analysis found that the accuracy of the offset displacement measurements is dependent on the distance between the retaining wall and the sensor, location of the reference points in 3D space, and the focal length of the lenses used by the camera. These parameters were not ideal for the case study at the M-10 highway site, but the results provided consistent trends in the movement of the retaining wall that couldn’t be validated from offset measurements. The findings of this study confirm that photogrammetry shows promise in generating 3D models to provide a quantitative condition assessment for retaining walls within its limitations.
Resumo:
A travel article about the Teuila Festival in Samoa. "IT isn't a festival without a boat race," Faumui Iese says. We stand together on one side of a spectator boat as it follows the Teuila Festival Fautasi Race. On the shoreline, a crowd clambers down a retaining wall. It seems his is a common sentiment. Each team represents a village...
Resumo:
The seismic performance of waterfront cantilever sheet pile retaining walls is of continuing interest to geotechnical engineers as these structures suffer severe damage and even complete failure during earthquakes. This is often precipitated by liquefaction of the surrounding soil, either in the backfill or in front of the wall. This paper presents results from a series of small-scale plane strain models that were tested on a 1-g shaking table and recorded using a high-speed, high-resolution digital camera. The technique of Particle Image Velocimetry (PIV) was applied in order to allow the failure mechanisms to be visualised. It is shown that using PIV analyses it is possible to obtain failure mechanisms for a cantilever wall in liquefiable soil. These failure mechanisms are compared with those obtained for a cantilever wall in dry soil, previously carried out at a similar scale. It was observed that seismic liquefaction causes significant displacement in much larger zones of soil near the retaining wall compared to an equivalent dry case. The failure mechanism for a cantilever wall with liquefiable backfill, but with a remediated zone designed not to liquefy, is also presented and compared to the unremediated case.
Resumo:
The horizontal arching mechanism transfers horizontal earth pressures acting on flexible retaining wall panels to stiffer neighbouring elements via soil shear stresses. In this research, the horizontal arching mechanism and lateral displacements of fixed cantilever walls in a model basement are investigated using centrifuge tests. A series of six tests was carried out at 45 gravities where the panel widths and thicknesses around the model basement were varied, so that the effects of panel geometry and stiffness on horizontal arching could be studied. It is shown that panel crest displacements and base bending moments of the most flexible, narrow panels can be an order of magnitude smaller than conventional active earth pressure calculations would allow. It is suggested that the reduction of earth pressure acting on a panel is directly correlated to the mobilized soil shear strength and hence, soil shear strain. Earth pressure coefficients K are plotted against panel displacements normalized by the panel width, u/B, to simulate the reduction of K with increasing soil strain.An idealized K-u/B curve is introduced, characterised by a reference distortion (u/B) ref beyond which fully plastic soil arching can be inferred, and which is related to the corresponding reference shear strain γ ref at which soil strength is fully mobilized in element tests. © 2006 Taylor & Francis Group, London.
Resumo:
Underground space is commonly exploited both to maximise the utility of costly land in urban development and to reduce the vertical load acting on the ground. Deep excavations are carried out to construct various types of underground infrastructure such as deep basements, subways and service tunnels. Although the soil response to excavation is known in principle, designers lack practical calculation methods for predicting both short- and long-term ground movements. As the understanding of how soil behaves around an excavation in both the short and long term is insufficient and usually empirical, the judgements used in design are also empirical and serious accidents are common. To gain a better understanding of the mechanisms involved in soil excavation, a new apparatus for the centrifuge model testing of deep excavations in soft clay has been developed. This apparatus simulates the field construction sequence of a multi-propped retaining wall during centrifuge flight. A comparison is given between the new technique and the previously used method of draining heavy fluid to simulate excavation in a centrifuge model. The new system has the benefit of giving the correct initial ground conditions before excavation and the proper earth pressure distribution on the retaining structures during excavation, whereas heavy fluid only gives an earth pressure coefficient of unity and is unable to capture any changes in the earth pressure coefficient of soil inside the zone of excavation, for example owing to wall movements. Settlements of the ground surface, changes in pore water pressure, variations in earth pressure, prop forces and bending moments in the retaining wall are all monitored during excavation. Furthermore, digital images taken of a cross-section during the test are analysed using particle image velocimetry to illustrate ground deformation and soil-structure interaction mechanisms. The significance of these observations is discussed.
Resumo:
To maximize the utility of high land cost in urban development, underground space is commonly exploited, both to reduce the load acting on the ground and to increase the space available. The execution of underground constructions requires the use of appropriate retaining wall and bracing systems. Inadequate support systems have always been a major concern, as any excessive ground movement induced during excavation could cause damage to neighboring structures, resulting in delays, disputes and cost overruns. Experimental findings on the effect of wall stiffness, depth of the stiff stratum away from the wall toe and wall toe fixity condition are presented and discussed. © 2012 Taylor & Francis Group.
Resumo:
Underground space is commonly exploited both to maximise the utility of costly land in urban development and to reduce the vertical load acting on the ground. Deep excavations are carried out to construct various types of underground infrastructure such as deep basements, subways and service tunnels. Although the soil response to excavation is known in principle, designers lack practical calculation methods for predicting both short- and long-term ground movements. As the understanding of how soil behaves around an excavation in both the short and long term is insufficient and usually empirical, the judgements used in design are also empirical and serious accidents are common. To gain a better understanding of the mechanisms involved in soil excavation, a new apparatus for the centrifuge model testing of deep excavations in soft clay has been developed. This apparatus simulates the field construction sequence of a multi-propped retaining wall during centrifuge flight. A comparison is given between the new technique and the previously used method of draining heavy fluid to simulate excavation in a centrifuge model. The new system has the benefit of giving the correct initial ground conditions before excavation and the proper earth pressure distribution on the retaining structures during excavation, whereas heavy fluid only gives an earth pressure coefficient of unity and is unable to capture any changes in the earth pressure coefficient of soil inside the zone of excavation, for example owing to wall movements. Settlements of the ground surface, changes in pore water pressure, variations in earth pressure, prop forces and bending moments in the retaining wall are all monitored during excavation. Furthermore, digital images taken of a cross-section during the test are analysed using particle image velocimetry to illustrate ground deformation and soil–structure interaction mechanisms. The significance of these observations is discussed.
Resumo:
Finite Element (FE) pseudo-static analysis can provide a good compromise between simplified methods of dynamic analysis and time domain analysis. The pseudo-static FE approach can accurately model the in situ, stresses prior to seismic loading (when it follows a static analysis simulating the construction sequence) is relatively simple and not as computationally expensive as the time domain approach. However this method should be used with caution as the results can be sensitive to the choice of the mesh dimensions. In this paper two simple examples of pseudo-static finite element analysis are examined parametrically, a homogeneous slope and a cantilever retaining wall, exploring the sensitivity of the pseudo-static analysis results on the adopted mesh size. The mesh dependence was found to be more pronounced for problems with high critical seismic coefficients values (e.g. gentle slopes or small walls), as in these cases a generalised layer failure mechanism is developed simultaneously with the slope or wall mechanism. In general the mesh width was found not to affect notably the predicted value of critical seismic coefficient but to have a major impact on the predicted movements. © 2012 Elsevier Ltd.
Resumo:
Theory of limit analysis include upper bound theorem and lower bound theorem. To deal with slope stability analysis by limit analysis is to approximate the real solution from upper limit and lower limit. The most used method of limit analysis is upper bound theorem, therefore it is often applied to slope engineering in many cases. Although upper bound approach of limit analysis can keep away from vague constitutive relation and complex stress analyses, it also can obtain rigorous result. Assuming the critical surface is circular slip surface, two kinematically admissible velocity fields for perpendicular slice method and radial slice method can be established according to the limit analysis of upper bound theorem. By means of virtual work rate equation and strength reduction method, the upper-bound solution of limit analysis for homogeneous soil slope can be obtained. A log-spiral rotational failure mechanism for homogeneous slope is discussed from two different conditions which represent the position of shear crack passing the toe and below the toe. In the dissertition, the author also establishes a rotational failure mechanics with combination of different logarithmic spiral arcs. Furthermore, the calculation formula of upper bound solution for inhomogeneous soil slope stability problem can be deduced based on the upper bound approach of rigid elements. Through calculating the external work rate caused by soil nail, anti-slide pile, geotechnological grid and retaining wall, the upper bound solution of safety factor of soil nail structure slope, slip resistance of anti-slide pile, critical height of reinforced soil slope and active earth pressure of retaining wall can be obtained by upper bound limit analysis method. Taking accumulated body slope as subject investigated, with study on the limit analysis method to calculate slope safety factor, the kinematically admissible velocity fields of perpendicular slice method for slope with broken slip surface is proposed. Through calculating not only the energy dissipation rate produced in the broken slip surfaces and the vertical velocity discontinuity, but also the work rate produced by self-weight and external load, the upper bound solution of slope with broken slip surface is deduced. As a case study, the slope stability of the Sanmashan landslide in the area of the Three Gorges reservoir is analyzed. Based on the theory of limit analysis, the upper bound solution for rock slope with planar failure surface is obtained. By means of virtual work-rate equation, energy dissipation caused by dislocation of thin-layer and terrane can be calculated; furthermore, the formulas of safety factor for upper bound approach of limit analysis can be deduced. In the end, a new computational model of stability analysis for anchored rock slope is presented after taking into consideration the supporting effect of rock-bolts, the action of seismic force and fissure water pressure. By using the model, not only the external woke-rate done by self-weight, seismic force, fissure water pressure and anchorage force but also the internal energy dissipation produced in the slip surface and structural planes can be totally calculated. According to the condition of virtual work rate equation in limit state, the formula of safety factor for upper bound limit analysis can be deduced.