668 resultados para Restrained Occupants.
Resumo:
A method is presented for determining the complete load-deflection behavior of reinforced concrete skew slabs restrained at the edges and subjected to uniformly-distributed loading. The analysis is considered in three stages. In the first stage the load-deflection behavior up to the cracking load is considered. The behavior between the cracking load and the yield line load is considered in the second stage. The load-deflection behavior beyond the yield line load, taking into account the effect of the membrane action, is considered in the third stage. Details of an experimental program of casting and testing 12 reinforced concrete skew slabs restrained at the edges are presented to verify the results of the analysis.
Resumo:
Growing consumer expectations continue to fuel further advancements in vehicle ride comfort analysis including development of a comprehensive tool capable of aiding the understanding of ride comfort. To date, most of the work on biodynamic responses of human body in the context of ride comfort mainly concentrates on driver or a designated occupant and therefore leaves the scope for further work on ride comfort analysis covering a larger number of occupants with detailed modeling of their body segments. In the present study, governing equations of a 13-DOF (degrees-of-freedom) lumped parameter model (LPM) of a full car with seats (7-DOF without seats) and a 7-DOF occupant model, a linear version of an earlier non-linear occupant model, are presented. One or more occupant models can be coupled with the vehicle model resulting into a maximum of 48-DOF LPM for a car with five occupants. These multi-occupant models can be formulated in a modular manner and solved efficiently using MATLAB/SIMULINK for a given transient road input. The vehicle model and the occupant model are independently verified by favorably comparing computed dynamic responses with published data. A number of cases with different dispositions of occupants in a small car are analyzed using the current modular approach thereby underscoring its potential for efficient ride quality assessment and design of suspension systems.
Resumo:
This paper describes the introduction of chained signage systems into evacuation simulation models. Signage systems are widely used in buildings to provide information for wayfinding, thereby providing exiting information during emergencies and assisting in navigation during normal circulation of pedestrians. Recently a system was developed to introduce simple signs into egress models. The system, known as Visibility Catchment Area or VCA, allowed similated agents to interact with signs which point directly to an exit and signs which are located directly above the exit. However, this approach was not able to represent the more general situation of a sign netwokr within an arbitrarily complex building. In this paper we extend the method to include chained signage systems which provides simulated agents that are unfamiliar with the structure a means by which to navigate to an emergency exit. The model includes the associated navigation behaviours exhibited by occupants that rely on a signage system for navigation including: Searching behaviours, Backtracking behaviours, Lost behaviours and Communication behaviours. The new features are demonstrated through a series of demonstration cases and are shown to produce plausible results.
Resumo:
The behaviour and ultimate load capacity of laterally-restrained reinforced concrete slabs can be considerably enhanced by the development of arching or compressive membrane action. This paper presents a simple method for predicting the enhanced ultimate load capacity of laterally-restrained slab strips. The method is based on deformation theory and utilizes an elastic-plastic stress-strain criterion for concrete. The loads carried by bending and arching action are calculated separately and then added to give the total ultimate load capacity. A simple equivalent strip approach, based on a three-hinged arch analogy, allows for the degree of lateral restraint. The method of prediction has been validated by correlation with a wide range of test results from various sources.
Resumo:
Compacted clay fills are generally placed at the optimum value of water content and, immediately after placement, they are unsaturated. Wetting might subsequently occur due, for example, to rainfall infiltration, which can cause volumetric deformation of the fill (either swell or collapse) with associated loss of shear strength and structural integrity. If swelling takes place under partially restrained deformation, due for example to the presence of a buried rigid structure or a retaining wall, additional stresses will develop in the soil and these can be detrimental to the stability of walling elements and other building assets. Factors such as dry density, overburden pressure, compaction water content and type of clay are known to influence the development of stresses. This paper investigates these factors by means of an advanced stress path testing programme performed on four different clays with different mineralogy, index properties and geological histories. Specimens of kaolin clay, London Clay, Belfast Clay and Ampthill Clay were prepared at different initial states and subjected to ‘controlled’ wetting, whereby the suction was reduced gradually to zero under laterally restrainedconditions (i.e. K0 conditions). The results showed that the magnitude of the increase in horizontal stresses (and therefore the increase of K0) is influenced by the overburden pressure, compaction water content, dry density at the time of compaction and mineralogy.
Resumo:
This paper presents the numerical simulation of the ultimate behaviour of 85 one-way and two-way spanning laterally restrained concrete slabs of variable thickness, span, reinforcement ratio, strength and boundary conditions reported in literature by different authors. The developed numerical model was described and all the assumptions were illustrated. ABAQUS, a Finite Element Analysis suite of software, was employed. Non-linear implicit static general analysis method offered by ABAQUS was used. Other analysis methods were also discussed in general in terms of application such as Explicit Dynamic Analysis and Riks method. The aim is to demonstrate the ability and efficacy of FEA to simulate the ultimate load behaviour of slabs considering different material properties and boundary conditions. The authors intended to present a numerical model that provides consistent predictions of the ultimate behaviour of laterally restrained slabs that could be used as an alternative for expensive real life testing as well as for the design and assessment of new and existing structures respectively. The enhanced strength of laterally-restrained slabs compared with conventional design methods predictions is believed to be due to compressive membrane action (CMA). CMA is an inherent phenomenon of laterally restrained concrete beams/slabs. The numerical predictions obtained from the developed model were in good correlation with the experimental results and with those obtained from the CMA method developed at the Queen’s University Belfast, UK.
Resumo:
Intracerebroventricular (ICV) administration of bombesin (BN) induces a
syndrome characterized by stereotypic locomotion and grooming,
hyperactivity and sleep elimination, hyperglycemia and hypothermia,
hyperhemodynamics, feeding inhibition, and gastrointestinal function
changes. Mammalian BN-like peptides (MBNs), e.g. gastrin-releasing
peptide (GRP), Neuromedin C (NMC), and Neuromedin B (NMB), have been
detected in the central nervous system. Radio-labeled BN binds to specific
sites in discrete cerebral regions. Two specific BN receptor subtypes (GRP
receptor and NMB receptor) have been identified in numerous brain regions.
The quantitative 2-[14C]deoxyglucose ([14C]20G) autoradiographic
method was used to map local cerebral glucose utilization (LCGU) in the
rat brain following ICV injection of BN (vehicle, BN O.1Jlg, O.5Jlg). At each
dose, experiments were conducted in freely moving or restrained
conditions to determine whether alterations in cerebral function were the
result of BN central administration, or were the result of BN-induced
motor stereotypy. The anteroventral thalamic nucleus (AV) (p=O.029),
especially its ventrolateral portion (AVVL) (p