970 resultados para Respiratory syncytial pneumovirus
Resumo:
The aim of this study was to develop a polymerase chain reaction (PCR) for the detection of respiratory syncytial virus (RSV) genomes. The primers were designed from published sequences and selected from conserved regions of the genome encoding for the N protein of subgroups A and B of RSV. PCR was applied to 20 specimens from children admitted to the respiratory ward of "William Soler" Pediatric Hospital in Havana City with a clinical diagnosis of bronchiolitis. The PCR was compared with viral isolation and with an indirect immunofluorescence technique that employs monoclonal antibodies of subgroups A and B. Of 20 nasopharyngeal exudates, 10 were found positive by the three assayed methods. In only two cases, samples that yielded positive RNA-PCR were found negative by indirect immunofluorescence and cell culture. Considering viral isolation as the "gold standard" technique, RNA-PCR had 100% sensitivity and 80% specificity. RNA-PCR is a specific and sensitive technique for the detection of the RSV genome. Technical advantages are discussed
Resumo:
Twenty-six human respiratory syncytial virus strains (subgroup A) isolated from three outbreaks in Havana City during the period 1994/95, 1995/96 and 1996/97 were analyzed to determine their antigenic and genetic relationships. Analyses were performed by monoclonal antibodies and restriction mapping (N gene) following amplification of the select region of the virus genome by polymerase chain reaction. All isolated strains were classified as subgroup A by monoclonal antibodies and they showed a restriction pattern NP4 that belonged to subgroup A. Thus the results obtained in this work, showed a close relation (100%) between antigenic and genetic characterization of the isolated strains in our laboratory. These methods permit the examination of large numbers of isolates by molecular techniques, simplifying the researchs into the molecular epidemiology of the virus.
Resumo:
We analyzed the respiratory syncytial virus (RSV) groups and their epidemiological pattern that were detected over the course of seven years in southern Brazil. The two RSV groups co-circulated each year, but frequencies of groups A and B varied both between and within yearly outbreaks. In 1991, group A predominated over group B (p=0.0016). RSV outbreaks analyzed showed a temperature-dependent pattern and no association with rainfall, similarly to other countries from southern South America. Knowledge of the variants is important in terms of both diagnosis and definition of a vaccine composition.
Resumo:
Acute respiratory infections (ARI) caused by respiratory syncytial virus (RSV) were studied in 482 children from Salvador, BA, Brazil, over a period of 12 months. The epidemic period of RSV infections in Salvador occurred from February (summer) to August (winter), with peaks in May, June, and July. The grouping characteristics of 84 RSV present in nasopharyngeal secretions of children seen at a reference university hospital were analyzed. RSV represented 17.4% of all cases and 54.5% of the positive samples. Sixty-four RSV strains were assigned to group A and 14 to group B. Both groups circulated in the five months of the epidemic period studied. Infections by both groups of RSV were more frequent in children up to one year of age. The incidence of RSV ARI was slightly more frequent in males, although group B had more infected females.
Resumo:
The variability of the G glycoprotein from human respiratory syncytial viruses (HRSV) (groups A and B) isolated during 17 consecutive epidemics in Montevideo, Uruguay have been analyzed. Several annual epidemics were studied, where strains from groups A and B circulated together throughout the epidemics with predominance of one of them. Usually, group A predominates, but in some epidemics group B is more frequently detected. To analyse the antigenic diversity of the strains, extracts of cells infected with different viruses of group A were tested with a panel of anti-G monoclonal antibodies (MAbs). The genetic variability of both groups was analyzed by sequencing the C-terminal third of the G protein gene. The sequences obtained together with previously published sequences were used to perform phylogenetic analyses. The data from Uruguayan isolates, together with those from the rest of the world provide information regarding worldwide strain circulation. Phylogenetic analyses of HRSV from groups A and B show a model of evolution analogous to the one proposed for influenza B viruses providing information that would be beneficial for future immunization programs and to design safe vaccines.
Resumo:
Cell culture isolation is used for recovering respiratory syncytial virus (RSV) from respiratory specimens. As RSV is a thermolabile virus, specimens destined for inoculation into cell culture require special transport, handling, and storage. The isolation rate of RSV from nasopharyngeal aspirates (NPA) stored at 20ºC for one to 15 months after collection was investigated. A total of 126 samples considered positive for RSV by indirect fluorescence-antibody were tested by virus isolation in HEp-2 cell culture. RSV was isolated from 47/126 specimens (37.3%). These results show that RSV may be recovered from NPA stored at 20ºC by cell culture.
Resumo:
Respiratory syncytial virus (RSV) is well recognized as the most important pathogen causing acute respiratory disease in infants and young children, mainly in the form of bronchiolitis and pneumonia. Two major antigenic groups, A and B, have been identified; however, there is disagreement about the severity of the diseases caused by these two types. This study investigated a possible association between RSV groups and severity of disease. Reverse transcription-polymerase chain reaction was used to characterize 128 RSV nasopharyngeal specimens from children less than five years old experiencing acute respiratory disease. A total of 82 of 128 samples (64.1%) could be typed, and, of these, 78% were group A, and 22% were group B. Severity was measured by clinical evaluation associated with demographic factors: for RSV A-infected patients, 53.1% were hospitalized, whereas for RSV B patients, 27.8% were hospitalized (p = 0.07). Around 35.0% of the patients presented risk factors for severity (e.g., prematurity). For those without risk factors, the hospitalization occurred in 47.6% of patients infected with RSV A and in 18.2% infected with RSV B. There was a trend for RSV B infections to be milder than those of RSV A. Even though RSV A-infected patients, including cases without underlying condition and prematurity, were more likely to require hospitalization than those infected by RSV B, the disease severity could not to be attributed to the RSV groups.
Resumo:
Comparison of the use of indirect immunofluorescence assay (IFA), immunochromatography assay (ICA-BD) and reverse transcription-polymerase chain reaction (RT-PCR) for detecting human respiratory syncytial virus (HRSV) in 306 nasopharyngeal aspirates samples (NPA) was performed in order to assess their analytical performance. By comparing the results obtained using ICA-BD with those using IFA, we found relative indices of 85.0% for sensitivity and 91.2% for specificity, and the positive (PPV) and negative (NPV) predictive values were 85.0% and 91.2%, respectively. The relative indices for sensitivity and specificity as well as the PPV and NPV for RT-PCR were 98.0%, 89.0%, 84.0% and 99.0%, respectively, when compared to the results of IFA. In addition, comparison of the results of ICA-BD and those of RT-PCR yielded relative indices of 79.5% for sensitivity and 95.4% for specificity, as well as PPV and NPV of 92.9% and 86.0%, respectively. Although RT-PCR has shown the best performance, the substantial agreement between the ICA-BD and IFA results suggests that ICA-BD, also in addition to being a rapid and facile assay, could be suitable as an alternative diagnostic screening for HRSV infection in children.
Resumo:
Human adenovirus (HAdV) and human respiratory syncytial virus (HRSV) are important etiologic agents of acute respiratory infections. In this study, a duplex polymerase chain reaction (PCR) assay was developed for the simultaneous detection of HAdV and HRSV in clinical samples. Sixty previously screened nasopharyngeal aspirates were used: 20 HAdV-positive, 20 HRSV-positive and 20 double-negative controls. Eight samples were positive for both viruses. The duplex PCR assay proved to be as sensitive and specific as single-target assays and also detected the mixed infections with certainty. The identification of both viruses in a single reaction offers a reduction in both cost and laboratory diagnostic time.
Resumo:
Human respiratory syncytial virus (HRSV) causes severe infections among children and immunocompromised patients. We compared HRSV infections among Haematopoietic Stem Cell Transplant program (HSCT) patients and children using direct immunofluorescence (DFA), point-of-care RSV Bio Easy® and a polymerase chain reaction (PCR) assay. Overall, 102 samples from HSCT patients and 128 from children obtained positivity rate of 18.6% and 14.1% respectively. PCR sensitivity was highest mainly on samples collected after five days of symptoms onset. A combination of both DFA and reverse transcriptase-PCR methods for HSCT high-risk patients is the best diagnostic flow for HRSV diagnosis among these patients.
Resumo:
Human respiratory syncytial virus (HRSV) is an important respiratory pathogens among children between zero-five years old. Host immunity and viral genetic variability are important factors that can make vaccine production difficult. In this work, differences between biological clones of HRSV were detected in clinical samples in the absence and presence of serum collected from children in the convalescent phase of the illness and from their biological mothers. Viral clones were selected by plaque assay in the absence and presence of serum and nucleotide sequences of the G2 and F2 genes of HRSV biological clones were compared. One non-synonymous mutation was found in the F gene (Ile5Asn) in one clone of an HRSV-B sample and one non-synonymous mutation was found in the G gene (Ser291Pro) in four clones of the same HRSV-B sample. Only one of these clones was obtained after treatment with the child's serum. In addition, some synonymous mutations were determined in two clones of the HRSV-A samples. In conclusion, it is possible that minor sequences could be selected by host antibodies contributing to the HRSV evolutionary process, hampering the development of an effective vaccine, since we verify the same codon alteration in absence and presence of human sera in individual clones of BR-85 sample.
Resumo:
Respiratory syncytial virus (RSV) infection is the leading cause of hospitalisation for respiratory diseases among children under 5 years old. The aim of this study was to analyse RSV seasonality in the five distinct regions of Brazil using time series analysis (wavelet and Fourier series) of the following indicators: monthly positivity of the immunofluorescence reaction for RSV identified by virologic surveillance system, and rate of hospitalisations per bronchiolitis and pneumonia due to RSV in children under 5 years old (codes CID-10 J12.1, J20.5, J21.0 and J21.9). A total of 12,501 samples with 11.6% positivity for RSV (95% confidence interval 11 - 12.2), varying between 7.1 and 21.4% in the five Brazilian regions, was analysed. A strong trend for annual cycles with a stable stationary pattern in the five regions was identified through wavelet analysis of the indicators. The timing of RSV activity by Fourier analysis was similar between the two indicators analysed and showed regional differences. This study reinforces the importance of adjusting the immunisation period for high risk population with the monoclonal antibody palivizumab taking into account regional differences in seasonality of RSV.
Resumo:
Summary: The spread of bovine respiratory syncytial virus and bovine coronavirus epidemic in spring and situation in fall 2000