993 resultados para Resonant power convertors


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bit-stream-based control, which uses one bit wide signals to control power electronics applications, is a new approach for controller design in power electronic systems. This study presents a novel family of three-phase space vector modulators, which are based on the bit-stream technique and suitable for three-phase inverter systems. Each of the proposed modulators simultaneously converts a two-phase reference to the three-phase domain and reduces switching frequencies to reasonable levels. The modulators do not require carrier oscillators, trigonometric functions or, in some cases, sector detectors. A complete three-phase modulator can be implemented in as few as 102 logic elements. The performance of the proposed modulators is compared through simulation and experimental testing of a 6 kW, three-phase DC-to-AC inverter. Subject to limits on the modulation index, the proposed modulators deliver spread-spectrum output currents with total harmonic distortion comparable to a standard carrier-based space vector pulse width modulator.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Supercapacitors are increasingly used as short term energy storage elements in distributed generation systems. The traditional approach in integrating them to the main system is the use of interfacing dc-dc converters which introduce additional costs and power losses. This paper therefore, presents a novel direct integration scheme for supercapacitors and thereby eliminates associated costs and power losses of interfacing converters. The idea is simply to replace ordinary capacitors of three-level flying-capacitor rectifiers with supercapacitors and operate them under variable voltage conditions. An analysis on the reduction of power losses by the proposed system is presented. Furthermore, supercapacitor sizing and implementation issues such as effects of the variable voltage operation and resistive behavior of supercapacitors at high frequencies are also discussed. Simulation results are presented to verify the efficacy of the proposed system in suppressing short term power fluctuations in wind generation system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The drive towards high efficiency wind energy conversion systems has resulted in almost all the modern wind turbines to operate in the variable speed mode which inevitably requires back-to-back power electronic converters to decouple generator dynamics from the grid. The aim of this paper is to present an analysis on suitable topologies for the generator-side converter (rectifier) of the back-to-back converter arrangement. Performance of the two most popular rectifier systems, namely, the passive diode bridge rectifier and the active six-switch two-level rectifier are taken as two extremes to evaluate other topologies presented in this paper. The other rectifier systems considered in this study include combinations of a diode bridge rectifier and electronic reactance(s), a combination of a rectifier and a dc-dc converter and a half controlled rectifier. Diode-clamped and capacitor-clamped three-level active rectifier topologies and their possible switch reductions are also discussed in relation to the requirements of modern high power wind energy conversion systems (WECSs). Simulation results are presented to support conclusion derived from this analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Battery/supercapacitor hybrid energy storage systems have been gaining popularity in electric vehicles due to their excellent power and energy performances. Conventional designs of such systems require interfacing dc-dc converters. These additional dc-dc converters increase power loss, complexity, weight and cost. Therefore, this paper proposes a new direct integration scheme for battery/supercapacitor hybrid energy storage systems using a double ended inverter system. This unique approach eliminates the need for interfacing converters and thus it is free from aforementioned drawbacks. Furthermore, the proposed system offers seven operating modes to improve the effective use of available energy in a typical drive cycle of a hybrid electric vehicle. Simulation results are presented to verify the efficacy of the proposed system and control techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a novel battery direct integration scheme for renewable energy systems. The idea is to replace ordinary capacitors of a three-level flying-capacitor inverter by three battery banks to alleviate power fluctuations in renewable generation. This approach eliminates the need for interfacing dc-dc converters and thus considerably improves the overall efficiency. However, the major problem with this approach is the uneven distribution of space vectors which is due to unavoidable unbalance in clamping voltages. A detailed analysis on the effects of this issue and a novel carrier based pulse width modulation method, which can generate undistorted currents even in the presence of unevenly distributed space vectors, are presented in this paper. A charge/discharge controller is also proposed for power sharing and state of charge balancing of battery banks. Simulation results are presented to verify the efficacy of the proposed system, modulation method and power sharing controller.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Battery-supercapacitor hybrid energy storage systems are becoming popular in the renewable energy sector due to their improved power and energy performances. These hybrid systems require separate dc-dc converters, or at least one dc-dc converter for the supercapacitor bank, to connect them to the dc-link of the grid interfacing inverter. These additional dc-dc converters increase power losses, complexity and cost. Therefore, possibility of their direct connection is investigated in this paper. The inverter system used in this study is formed by cascading two 3-level inverters, named as the “main inverter” and the “auxiliary inverter”, through a coupling transformer. In the test system the main inverter is connected with the rectified output of a wind generator while the auxiliary inverter is directly attached to a battery and a supercapacitor bank. The major issues with this approach are the dynamic changes in dc-link voltages and inevitable imbalances in the auxiliary inverter voltages, which results in unevenly distributed space vectors. A modified SVM technique is proposed to solve this issue. A PWM based time sharing method is proposed for power sharing between the battery and the supercapacitor. Simulation results are presented to verify the efficacy of the proposed modulation and control techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Z-source inverter based grid-interface for a variable-speed wind turbine connected to a permanent magnet synchronous generator is proposed. A control system is designed to harvest maximum wind energy under varied wind conditions with the use of the permanent magnet synchronous generator, diode-rectifier and Z-source inverter. Control systems for speed regulation of the generator and for DC- and AC- sides of the Z-source inverter are investigated using computer simulations and laboratory experiments. Simulation and experimental results verify the efficacy of the proposed approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wind power is one of the most developed renewable energy resources worldwide. To integrate offshore wind farms to onshore grids, the high-voltage direct current (HVDC) transmission cables interfaced with voltage source converters (VSCs) are considered to be a better solution than conventional approaches. Proper DC voltage indicates successive power transfer. To connect more than one onshore grid, the DC voltage droop control is one of the most popular methods to share the control burden between different terminals. However, the challenges are that small droop gains will cause voltage deviations, while higher droop gain settings will cause large oscillations. This study aims to enhance the performance of the traditional droop controller by considering the DC cable dynamics. Based on the backstepping control concept, DC cables are modelled with a series of capacitors and inductors. The final droop control law is deduced step-by-step from the original remote side. At each step the control error from the previous step is considered. Simulation results show that both the voltage deviations and oscillations can be effectively reduced using the proposed method. Further, power sharing between different terminals can be effectively simplified such that it correlates linearly with the droop gains, thus enabling simple yet accurate system operation and control.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis reports on the experimental realization, characterization and application of a novel microresonator design. The so-called “bottle microresonator” sustains whispering-gallery modes in which light fields are confined near the surface of the micron-sized silica structure by continuous total internal reflection. While whispering-gallery mode resonators in general exhibit outstanding properties in terms of both temporal and spatial confinement of light fields, their monolithic design makes tuning of their resonance frequency difficult. This impedes their use, e.g., in cavity quantum electrodynamics (CQED) experiments, which investigate the interaction of single quantum mechanical emitters of predetermined resonance frequency with a cavity mode. In contrast, the highly prolate shape of the bottle microresonators gives rise to a customizable mode structure, enabling full tunability. The thesis is organized as follows: In chapter I, I give a brief overview of different types of optical microresonators. Important quantities, such as the quality factor Q and the mode volume V, which characterize the temporal and spatial confinement of the light field are introduced. In chapter II, a wave equation calculation of the modes of a bottle microresonator is presented. The intensity distribution of different bottle modes is derived and their mode volume is calculated. A brief description of light propagation in ultra-thin optical fibers, which are used to couple light into and out of bottle modes, is given as well. The chapter concludes with a presentation of the fabrication techniques of both structures. Chapter III presents experimental results on highly efficient, nearly lossless coupling of light into bottle modes as well as their spatial and spectral characterization. Ultra-high intrinsic quality factors exceeding 360 million as well as full tunability are demonstrated. In chapter IV, the bottle microresonator in add-drop configuration, i.e., with two ultra-thin fibers coupled to one bottle mode, is discussed. The highly efficient, nearly lossless coupling characteristics of each fiber combined with the resonator's high intrinsic quality factor, enable resonant power transfers between both fibers with efficiencies exceeding 90%. Moreover, the favorable ratio of absorption and the nonlinear refractive index of silica yields optical Kerr bistability at record low powers on the order of 50 µW. Combined with the add-drop configuration, this allows one to route optical signals between the outputs of both ultra-thin fibers, simply by varying the input power, thereby enabling applications in all-optical signal processing. Finally, in chapter V, I discuss the potential of the bottle microresonator for CQED experiments with single atoms. Its Q/V-ratio, which determines the ratio of the atom-cavity coupling rate to the dissipative rates of the subsystems, aligns with the values obtained for state-of-the-art CQED microresonators. In combination with its full tunability and the possibility of highly efficient light transfer to and from the bottle mode, this makes the bottle microresonator a unique tool for quantum optics applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A high voltage pulsed power supply is proposed in this paper based on oscillation between an inductor and a capacitor in an LC circuit. A two-leg resonant circuit, supplied through an inverter with an alternative voltage waveform, can generate output voltage up to four times an input voltage magnitude. Bipolar and unipolar modulations are used in a single phase inverter to analyse their effects on the proposed resonant converter. Simulations have been carried out to evaluate the proposed topology and control.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel concept of producing high dc voltage for pulsed-power applications is proposed in this paper. The topology consists of an LC resonant circuit supplied through a tuned alternating waveform that is produced by an inverter. The control scheme is based on the detection of variations in the resonant frequency and adjustment of the switching signal patterns for the inverter to produce a square waveform with exactly the same frequencies. Therefore the capacitor voltage oscillates divergently with an increasing amplitude. A simple one-stage capacitor-diode voltage multiplier (CDVM) connected to the resonant capacitor then rectifies the alternating voltage and gives a dc level equal to twice the input voltage amplitude. The produced high voltage appears then in the form of high-voltage pulses across the load. A basic model is simulated by Simulink platform of MATLAB and the results are included in the paper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Piezoelectric ultrasound transducers are commonly used to convert mechanical energy to electrical energy and vice versa. The transducer performance is highly affected by the frequency at which it is excited. If excitation frequency and main resonant frequency match, transducers can deliver maximum power. However, the problem is that main resonant frequency changes in real time operation resulting in low power conversion. To achieve the maximum possible power conversion, the transducer should be excited at its resonant frequency estimated in real time. This paper proposes a method to first estimate the resonant frequency of the transducer and then tunes the excitation frequency accordingly in real time. The measurement showed a significant difference between the offline and real time resonant frequencies. Also, it was shown that the maximum power was achieved at the resonant frequency estimated in real time compare to the one measured offline.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Resonant microwave power absorption is examined for slabs exposed to TEM waves from both faces and for a slab placed on a reflecting support. Using the electric field distribution in the slab, the average power is obtained by integrating the spatially distributed power across the sample length. Due to constructive interference of the standing waves within the sample, the average power rises to a local maximum during a resonance. Irrespective of the material, resonances occur at integral values of L/lambda(s) when the slab is exposed to radiation from both faces and at L/lambda(s) = 0.5n-0.25 when placed on a reflecting support.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A regenerative or circulating-power method is presented in this paper for heat run test on the legs of a three-level neutral point clamped (NPC) inverter. This test ensures that only losses are drawn from the dc supply, while rated power is circulated between the two legs, thus minimising wastage of energy. A proportional-resonant (PR) controller based current control scheme is proposed here for the circulating power test setup in NPC inverter. Simulation and experimental results are presented to validate the controller design at various operating conditions. Results of thermal test on the inverter legs are presented at two different operating conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Power consumption of a multi-GHz local clock driver is reduced by returning energy stored in the clock-tree load capacitance back to the on-chip power-distribution grid. We call this type of return energy recycling. To achieve a nearly square clock waveform, the energy is transferred in a non-resonant way using an on-chip inductor in a configuration resembling a full-bridge DC-DC converter. A zero-voltage switching technique is implemented in the clock driver to reduce dynamic power loss associated with the high switching frequencies. A prototype implemented in 90 nm CMOS shows a power savings of 35% at 4 GHz. The area needed for the inductor in this new clock driver is about 6% of a local clock region. © 2006 IEEE.