891 resultados para Resistance to infection
Resumo:
Human peripheral blood lymphocytes (PBLs) were transduced with a number of recombinant retroviruses including RRz2, an LNL6-based virus with a ribozyme targeted to the human immunodeficiency virus (HIV) tat gene transcript inserted within the 3' region of the neomycin-resistance gene; RASH5, and LNHL-based virus containing an antisense sequence to the 5' leader region of HIV-1 downstream of the human cytomegalovirus promoter; and R20TAR, an LXSN-based virus with 20 tandem copies of the HIV-1 trans-activation response element sequence driven by the Moloney murine leukemia virus long terminal repeat. After G418 selection, transduced PBLs were challenged with the HIV-1 laboratory strain IIIB and a primary clinical isolate of HIV-1, 82H. Results showed that PBLs from different donors could be transduced and that this conferred resistance to HIV-1 infection. For each of the constructs, a reduction of approximately 70% in p24 antigen level relative to the corresponding control-vector-transduced PBLs was observed. Molecular analyses showed constitutive expression of all the transduced genes from the retroviral long terminal repeat, but no detectable transcript was seen from the internal human cytomegalovirus transcript was seen from the internal human cytomegalovirus promoter for the antisense construct. Transduction of, and consequent transgene expression in, PBLs did not impact on the surface expression of either CD4+/CD8+ (measured by flow cytometry) or on cell doubling time (examined by [3H]thymidine uptake). These results indicate the potential utility of these anti-HIV-1 gene therapeutic agents and show the preclinical value of this PBL assay system.
Resumo:
BALB/c interleukin-4 (IL-4(-/-)) or IL-4 receptor-alpha (IL-4ralpha(-/-)) knockout (KO) mice were used to assess the roles of the IL-4 and IL-13 pathways during infections with the blood or liver stages of plasmodium in murine malaria. Intraperitoneal infection with the blood-stage erythrocytes of Plasmodium berghei (ANKA) resulted in 100% mortality within 24 days in BALB/c mice, as well as in the mutant mouse strains. However, when infected intravenously with the sporozoite liver stage, 60 to 80% of IL-4(-/-) and IL-4ralpha(-/-) mice survived, whereas all BALB/c mice succumbed with high parasitemia. Compared to infected BALB/c controls, the surviving KO mice showed increased NK cell numbers and expression of inducible nitric oxide synthase (iNOS) in the liver and were able to eliminate parasites early during infection. In vivo blockade of NO resulted in 100% mortality of sporozoite-infected KO mice. In vivo depletion of NK cells also resulted in 80 to 100% mortality, with a significant reduction in gamma interferon (IFN-gamma) production in the liver. These results suggest that IFN-gamma-producing NK cells are critical in host resistance against the sporozoite liver stage by inducing NO production, an effective killing effector molecule against Plasmodium. The absence of IL-4-mediated functions increases the protective innate immune mechanism identified above, which results in immunity against P. berghei infection in these mice, with no major role for IL-13.
Resumo:
RTSV is one of two viruses that cause tungro disease. RTSV is independently transmitted, whereas the other virus, rice tungro bacilliform virus (RTBV), is dependent on RTSV for its transmission by the green leafhopper (GLH), Nephotettix virescens. The occurrence and spread of tungro disease therefore depend on the presence of RTSV in the field. Resistance to RTSV infection would slow down the spread of the disease.
Resumo:
A system for agroinoculating rice tungro bacilliform virus (RTBV), one of the two viruses of the rice tungro disease complex, has been optimised. A nontumour-inducing strain of Agrobacterium (pGV3850) was used in order to conform with biosafety regulations. Fourteen-day-old seedlings survived the mechanical damage of the technique and were still young enough to support virus replication. The level of the bacterial inoculum was important to obtain maximum infection, with a high inoculum level (0.5 × 1012 cells/ml) resulting in up to 100% infection of a susceptible variety that was comparable with infection by insect transmission. Agroinoculation with RTBV was successful for all three rice cultivarss tested; TN1 (tungro susceptible), Balimau Putih (tungro tolerant), and IR26 (RTSV and vector resistant). Agroinoculation enables resistance to RTBV to be distinguished from resistance to the leafhopper vector of the virus, and should prove useful in screening rice germplasm, breeding materials, and transgenic rice lines.
Resumo:
Amoebic gill disease (AGD) is a parasite-mediated proliferative gill disease capable of affecting a range of teleost hosts. While a moderate heritability for AGD resistance in Atlantic salmon has been reported previously, the mechanisms by which individuals resist the proliferative effects remain poorly understood. To gain more knowledge of this commercially important trait, we compared gill transcriptomes of two groups of Atlantic salmon, one designated putatively resistant, and one designated putatively susceptible to AGD. Utilising a 17k Atlantic salmon cDNA microarray we identified 196 transcripts that were differentially expressed between the two groups. Expression of 11 transcripts were further examined with real-time quantitative RT-PCR (qPCR) in the AGD-resistant and AGD-susceptible animals, as well as non-infected naïve fish. Gene expression determined by qPCR was in strong agreement with the microarray analysis. A large number of differentially expressed genes were involved in immune and cell cycle responses. Resistant individuals displayed significantly higher expression of genes involved in adaptive immunity and negative regulation of the cell cycle. In contrast, AGD-susceptible individuals showed higher expression of acute phase proteins and positive regulators of the cell cycle. Combined with the gill histopathology, our results suggest AGD resistance is acquired rather than innately present, and that this resistance is for the most part associated with the dysregulation of immune and cell cycle pathways. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
New antiretroviral drugs that offer large genetic barriers to resistance, such as the recently approved inhibitors of HIV-1 protease, tipranavir and darunavir, present promising weapons to avert the failure of current therapies for HIV infection. Optimal treatment strategies with the new drugs, however, are yet to be established. A key limitation is the poor understanding of the process by which HIV surmounts large genetic barriers to resistance. Extant models of HIV dynamics are predicated on the predominance of deterministic forces underlying the emergence of resistant genomes. In contrast, stochastic forces may dominate, especially when the genetic barrier is large, and delay the emergence of resistant genomes. We develop a mathematical model of HIV dynamics under the influence of an antiretroviral drug to predict the waiting time for the emergence of genomes that carry the requisite mutations to overcome the genetic barrier of the drug. We apply our model to describe the development of resistance to tipranavir in in vitro serial passage experiments. Model predictions of the times of emergence of different mutant genomes with increasing resistance to tipranavir are in quantitative agreement with experiments, indicating that our model captures the dynamics of the development of resistance to antiretroviral drugs accurately. Further, model predictions provide insights into the influence of underlying evolutionary processes such as recombination on the development of resistance, and suggest guidelines for drug design: drugs that offer large genetic barriers to resistance with resistance sites tightly localized on the viral genome and exhibiting positive epistatic interactions maximally inhibit the emergence of resistant genomes.
Resumo:
The in vivo faecal egg count reduction test (FECRT) is the most commonly used test to detect anthelmintic resistance (AR) in gastrointestinal nematodes (GIN) of ruminants in pasture based systems. However, there are several variations on the method, some more appropriate than others in specific circumstances. While in some cases labour and time can be saved by just collecting post-drench faecal worm egg counts (FEC) of treatment groups with controls, or pre- and post-drench FEC of a treatment group with no controls, there are circumstances when pre- and post-drench FEC of an untreated control group as well as from the treatment groups are necessary. Computer simulation techniques were used to determine the most appropriate of several methods for calculating AR when there is continuing larval development during the testing period, as often occurs when anthelmintic treatments against genera of GIN with high biotic potential or high re-infection rates, such as Haemonchus contortus of sheep and Cooperia punctata of cattle, are less than 100% efficacious. Three field FECRT experimental designs were investigated: (I) post-drench FEC of treatment and controls groups, (II) pre- and post-drench FEC of a treatment group only and (III) pre- and post-drench FEC of treatment and control groups. To investigate the performance of methods of indicating AR for each of these designs, simulated animal FEC were generated from negative binominal distributions with subsequent sampling from the binomial distributions to account for drench effect, with varying parameters for worm burden, larval development and drench resistance. Calculations of percent reductions and confidence limits were based on those of the Standing Committee for Agriculture (SCA) guidelines. For the two field methods with pre-drench FEC, confidence limits were also determined from cumulative inverse Beta distributions of FEC, for eggs per gram (epg) and the number of eggs counted at detection levels of 50 and 25. Two rules for determining AR: (1) %reduction (%R) < 95% and lower confidence limit <90%; and (2) upper confidence limit <95%, were also assessed. For each combination of worm burden, larval development and drench resistance parameters, 1000 simulations were run to determine the number of times the theoretical percent reduction fell within the estimated confidence limits and the number of times resistance would have been declared. When continuing larval development occurs during the testing period of the FECRT, the simulations showed AR should be calculated from pre- and post-drench worm egg counts of an untreated control group as well as from the treatment group. If the widely used resistance rule 1 is used to assess resistance, rule 2 should also be applied, especially when %R is in the range 90 to 95% and resistance is suspected.
Resumo:
Postharvest diseases remain a significant constraint to the transport, storage and marketing of mangoes. The two main ones are anthracnose and stem end rot. Anthracnose caused by Colletotrichum gloeosporioides is the more wide-spread of the two. Varieties within Mangifera indica are known to vary in their level of reactions to anthracnose; however, the best tolerance in current commercial cultivars is not sufficient to eliminate the need for pre- and postharvest fungicides treatments. A screening program was initiated in mango accessions in the Australian National Mango Genebank to look for any significant resistance to C. gloeosporioides in fruit as they ripened. Screening was conducted by rating reactions to natural infection of anthracnose and reactions to artificially inoculating fruit with virulent isolates of C. gloeosporioides. A range of reactions to the pathogen were identified, with strong resistance found in one accession of the species M. laurina. This accession was used as the pollen parent in a controlled crossing program with a M. indica hybrid from the Australian Mango Breeding Program (AMBP). Sixty successful hybrids between the species have been generated. The hybrid population will be screened for resistance to anthracnose and used for gene discovery investigations to identify markers for anthracnose resistance.
Resumo:
Key message “To find stable resistance using association mapping tools, QTL with major and minor effects on leaf rust reactions were identified in barley breeding lines by assessing seedlings and adult plants.” Abstract Three hundred and sixty (360) elite barley (Hordeum vulgare L.) breeding lines from the Northern Region Barley Breeding Program in Australia were genotyped with 3,244 polymorphic diversity arrays technology markers and the results used to map quantitative trait loci (QTL) conferring a reaction to leaf rust (Puccinia hordei Otth). The F3:5 (Stage 2) lines were derived or sourced from different geographic origins or hubs of international barley breeding ventures representing two breeding cycles (2009 and 2011 trials) and were evaluated across eight environments for infection type at both seedling and adult plant stages. Association mapping was performed using mean scores for disease reaction, accounting for family effects using the eigenvalues from a matrix of genotype correlations. In this study, 15 QTL were detected; 5 QTL co-located with catalogued leaf rust resistance genes (Rph1, Rph3/19, Rph8/14/15, Rph20, Rph21), 6 QTL aligned with previously reported genomic regions and 4 QTL (3 on chromosome 1H and 1 on 7H) were novel. The adult plant resistance gene Rph20 was identified across the majority of environments and pathotypes. The QTL detected in this study offer opportunities for breeding for more durable resistance to leaf rust through pyramiding multiple genomic regions via marker-assisted selection.
Resumo:
Disease screening to determine the threat Puccinia psidii poses to plantation and native eucalypts in Australia was undertaken in half-sib families of two contrasting eucalypt species, Eucalyptus cloeziana and E. argophloia. Artificial inoculation with a single-lesion isolate of P. psidii was used to screen these species for resistance to the biotype of P. psidii established in Australia. The objective was to characterize resistance to P. psidii within these two distinct species: E. argophloia, a vulnerable species with a narrow distribution, and E. cloeziana, a species with a broad and extensive distribution in Queensland. Results for E. cloeziana indicate that inland provenances are more resistant to P. psidii infection than provenances from coastal regions. Heritability estimates for the two assessment systems used (resistance on a 1-to-5 ordinal scale verses resistance on a 0-to-1 binomial scale) were low to high (0.24 to 0.63) for E. argophloia and moderate to high (0.4 to 0.91) for E. cloeziana, indicating a significant level of additive genetic variance for rust resistance within the populations. This study demonstrates the potential to select resistant families within the tested populations and indicates that P. psidii could detrimentally affect these species in native forests, nurseries, and plantations. Disease screening to determine the threat Puccinia psidii poses to plantation and native eucalypts in Australia was undertaken in half-sib families of two contrasting eucalypt species, Eucalyptus cloeziana and E. argophloia. Artificial inoculation with a single-lesion isolate of P. psidii was used to screen these species for resistance to the biotype of P. psidii established in Australia. The objective was to characterize resistance to P. psidii within these two distinct species: E. argophloia, a vulnerable species with a narrow distribution, and E. cloeziana, a species with a broad and extensive distribution in Queensland. Results for E. cloeziana indicate that inland provenances are more resistant to P. psidii infection than provenances from coastal regions. Heritability estimates for the two assessment systems used (resistance on a 1-to-5 ordinal scale verses resistance on a 0-to-1 binomial scale) were low to high (0.24 to 0.63) for E. argophloia and moderate to high (0.4 to 0.91) for E. cloeziana, indicating a significant level of additive genetic variance for rust resistance within the populations. This study demonstrates the potential to select resistant families within the tested populations and indicates that P. psidii could detrimentally affect these species in native forests, nurseries, and plantations.
Resumo:
Brassica napus is one of the most important oil crops in the world, and stem rot caused by the fungus Sclerotinia sclerotiorum results in major losses in yield and quality. To elucidate resistance genes and pathogenesis-related genes, genome-wide association analysis of 347 accessions was performed using the Illumina 60K Brassica SNP (single nucleotide polymorphism) array. In addition, the detached stem inoculation assay was used to select five highly resistant (R) and susceptible (S) B. napus lines, 48 h postinoculation with S. sclerotiorum for transcriptome sequencing. We identified 17 significant associations for stem resistance on chromosomes A8 and C6, five of which were on A8 and 12 on C6. The SNPs identified on A8 were located in a 409-kb haplotype block, and those on C6 were consistent with previous QTL mapping efforts. Transcriptome analysis suggested that S. sclerotiorum infection activates the immune system, sulphur metabolism, especially glutathione (GSH) and glucosinolates in both R and S genotypes. Genes found to be specific to the R genotype related to the jasmonic acid pathway, lignin biosynthesis, defence response, signal transduction and encoding transcription factors. Twenty-four genes were identified in both the SNP-trait association and transcriptome sequencing analyses, including a tau class glutathione S-transferase (GSTU) gene cluster. This study provides useful insight into the molecular mechanisms underlying the plant's response to S. sclerotiorum.
Resumo:
It is pointed out that the complement Clq, associated with the immune response system, has a part containing about 80 residues with a collagen-like sequence, with Gly at every third location and having also a number of Hyp and Hyl residues in locations before Gly, and that it takes the triple-helical conformation characteristic of collagen. As with collagen biosynthesis, ascorbic acid is therefore expected to be required for its production. Also, collagen itself, in the extracellular matrix, is connected with the fibroblast surface protein (FSP), whose absence leads to cell proliferation, and whose addition leads to suppression of malignancy in tissue culture. All these show the great importance of vitamin C for resistance to diseases, and even to cancer, as has been widely advocated by Pauling.
Resumo:
Mycobacterium tuberculosis utilizes unique strategies to survive amid the hostile environment of infected host cells. Infection-specific expression of a unique mycobacterial cell surface antigen that could modulate key signaling cascades can act as a key survival strategy in curtailing host effector responses like oxidative stress. We demonstrate here that hypothetical PE_PGRS11 ORF encodes a functional phosphoglycerate mutase. The transcriptional analysis revealed that PE_PGRS11 is a hypoxia-responsive gene, and enforced expression of PE_PGRS11 by recombinant adenovirus or Mycobacterium smegmatis imparted resistance to alveolar epithelial cells against oxidative stress. PE_PGRS11-induced resistance to oxidative stress necessitated the modulation of genetic signatures like induced expression of Bcl2 or COX-2. This modulation of specific antiapoptotic molecular signatures involved recognition of PE_PGRS11 by TLR2 and subsequent activation of the PI3K-ERK1/ 2-NF-kappa B signaling axis. Furthermore, PE_PGRS11 markedly diminished H2O2-induced p38 MAPK activation. Interestingly, PE_PGRS11 protein was exposed at the mycobacterial cell surface and was involved in survival of mycobacteria under oxidative stress. Furthermore, PE_PGRS11 displayed differential B cell responses during tuberculosis infection. Taken together, our investigation identified PE_PGRS11 as an in vivo expressed immunodominant antigen that plays a crucial role in modulating cellular life span restrictions imposed during oxidative stress by triggering TLR2-dependent expression of COX-2 and Bcl2. These observations clearly provide a mechanistic basis for the rescue of pathogenic Mycobacterium-infected lung epithelial cells from oxidative stress.