843 resultados para Residual-Based Cointegration Test
Resumo:
Traditionally, the use of Bayes factors has required the specification of proper prior distributions on model parameters implicit to both null and alternative hypotheses. In this paper, I describe an approach to defining Bayes factors based on modeling test statistics. Because the distributions of test statistics do not depend on unknown model parameters, this approach eliminates the subjectivity normally associated with the definition of Bayes factors. For standard test statistics, including the _2, F, t and z statistics, the values of Bayes factors that result from this approach can be simply expressed in closed form.
Resumo:
BACKGROUND Driving a car is a complex instrumental activity of daily living and driving performance is very sensitive to cognitive impairment. The assessment of driving-relevant cognition in older drivers is challenging and requires reliable and valid tests with good sensitivity and specificity to predict safe driving. Driving simulators can be used to test fitness to drive. Several studies have found strong correlation between driving simulator performance and on-the-road driving. However, access to driving simulators is restricted to specialists and simulators are too expensive, large, and complex to allow easy access to older drivers or physicians advising them. An easily accessible, Web-based, cognitive screening test could offer a solution to this problem. The World Wide Web allows easy dissemination of the test software and implementation of the scoring algorithm on a central server, allowing generation of a dynamically growing database with normative values and ensures that all users have access to the same up-to-date normative values. OBJECTIVE In this pilot study, we present the novel Web-based Bern Cognitive Screening Test (wBCST) and investigate whether it can predict poor simulated driving performance in healthy and cognitive-impaired participants. METHODS The wBCST performance and simulated driving performance have been analyzed in 26 healthy younger and 44 healthy older participants as well as in 10 older participants with cognitive impairment. Correlations between the two tests were calculated. Also, simulated driving performance was used to group the participants into good performers (n=70) and poor performers (n=10). A receiver-operating characteristic analysis was calculated to determine sensitivity and specificity of the wBCST in predicting simulated driving performance. RESULTS The mean wBCST score of the participants with poor simulated driving performance was reduced by 52%, compared to participants with good simulated driving performance (P<.001). The area under the receiver-operating characteristic curve was 0.80 with a 95% confidence interval 0.68-0.92. CONCLUSIONS When selecting a 75% test score as the cutoff, the novel test has 83% sensitivity, 70% specificity, and 81% efficiency, which are good values for a screening test. Overall, in this pilot study, the novel Web-based computer test appears to be a promising tool for supporting clinicians in fitness-to-drive assessments of older drivers. The Web-based distribution and scoring on a central computer will facilitate further evaluation of the novel test setup. We expect that in the near future, Web-based computer tests will become a valid and reliable tool for clinicians, for example, when assessing fitness to drive in older drivers.
Resumo:
The wide use of antibiotics in aquaculture has led to the emergence of resistant microbial species. It should be avoided/minimized by controlling the amount of drug employed in fish farming. For this purpose, the present work proposes test-strip papers aiming at the detection/semi-quantitative determination of organic drugs by visual comparison of color changes, in a similar analytical procedure to that of pH monitoring by universal pH paper. This is done by establishing suitable chemical changes upon cellulose, attributing the paper the ability to react with the organic drug and to produce a color change. Quantitative data is also enabled by taking a picture and applying a suitable mathematical treatment to the color coordinates given by the HSL system used by windows. As proof of concept, this approach was applied to oxytetracycline (OXY), one of the antibiotics frequently used in aquaculture. A bottom-up modification of paper was established, starting by the reaction of the glucose moieties on the paper with 3-triethoxysilylpropylamine (APTES). The so-formed amine layer allowed binding to a metal ion by coordination chemistry, while the metal ion reacted after with the drug to produce a colored compound. The most suitable metals to carry out such modification were selected by bulk studies, and the several stages of the paper modification were optimized to produce an intense color change against the concentration of the drug. The paper strips were applied to the analysis of spiked environmental water, allowing a quantitative determination for OXY concentrations as low as 30 ng/mL. In general, this work provided a simple, method to screen and discriminate tetracycline drugs, in aquaculture, being a promising tool for local, quick and cheap monitoring of drugs.
Resumo:
This paper proposes a semiparametric smooth-coefficient (SPSC) stochastic production frontier model where regression coefficients are unknown smooth functions of environmental factors (ZZ). Technical inefficiency is specified in the form of a parametric scaling function which also depends on the ZZ variables. Thus, in our SPSC model the ZZ variables affect productivity directly via the technology parameters as well as through inefficiency. A residual-based bootstrap test of the relevance of the environmental factors in the SPSC model is suggested. An empirical application is also used to illustrate the technique.
Resumo:
OBJECTIVE: Accuracy studies of Patient Safety Indicators (PSIs) are critical but limited by the large samples required due to low occurrence of most events. We tested a sampling design based on test results (verification-biased sampling [VBS]) that minimizes the number of subjects to be verified. METHODS: We considered 3 real PSIs, whose rates were calculated using 3 years of discharge data from a university hospital and a hypothetical screen of very rare events. Sample size estimates, based on the expected sensitivity and precision, were compared across 4 study designs: random and VBS, with and without constraints on the size of the population to be screened. RESULTS: Over sensitivities ranging from 0.3 to 0.7 and PSI prevalence levels ranging from 0.02 to 0.2, the optimal VBS strategy makes it possible to reduce sample size by up to 60% in comparison with simple random sampling. For PSI prevalence levels below 1%, the minimal sample size required was still over 5000. CONCLUSIONS: Verification-biased sampling permits substantial savings in the required sample size for PSI validation studies. However, sample sizes still need to be very large for many of the rarer PSIs.
Resumo:
This thesis consists of four manuscripts in the area of nonlinear time series econometrics on topics of testing, modeling and forecasting nonlinear common features. The aim of this thesis is to develop new econometric contributions for hypothesis testing and forecasting in these area. Both stationary and nonstationary time series are concerned. A definition of common features is proposed in an appropriate way to each class. Based on the definition, a vector nonlinear time series model with common features is set up for testing for common features. The proposed models are available for forecasting as well after being well specified. The first paper addresses a testing procedure on nonstationary time series. A class of nonlinear cointegration, smooth-transition (ST) cointegration, is examined. The ST cointegration nests the previously developed linear and threshold cointegration. An Ftypetest for examining the ST cointegration is derived when stationary transition variables are imposed rather than nonstationary variables. Later ones drive the test standard, while the former ones make the test nonstandard. This has important implications for empirical work. It is crucial to distinguish between the cases with stationary and nonstationary transition variables so that the correct test can be used. The second and the fourth papers develop testing approaches for stationary time series. In particular, the vector ST autoregressive (VSTAR) model is extended to allow for common nonlinear features (CNFs). These two papers propose a modeling procedure and derive tests for the presence of CNFs. Including model specification using the testing contributions above, the third paper considers forecasting with vector nonlinear time series models and extends the procedures available for univariate nonlinear models. The VSTAR model with CNFs and the ST cointegration model in the previous papers are exemplified in detail,and thereafter illustrated within two corresponding macroeconomic data sets.
Resumo:
The article suggests a new test for strong hysteresis in international trade. The variables that capture the effects of hysteresis are based on the model of Dixit (1989) with calibrations using a state-space model to determine the parameters for each point in time. These variables are then applied to a cointegration test with breaks, where it is possible to verify whether the hysteresis effect is essential in determining the long-term equilibrium.
Resumo:
A study on a water- ow window installed in a test box is presented. This window is composed of two glass panes separated by a chamber through water ows. The ow of water comes from an isolated tank which contains heat water. In order to fully evaluate the water- ow window performance for different room and window sizes, locations and weather conditions, a mathematical model of the whole box is needed. The proposed model, in which conduction heat transfer mechanism is the only considered, is one dimensional and unsteady based upon test box energy balance. The effect of the heat water tank, which feeds the water- ow window, is included in the model by means of a time delay in the source term. Although some previous work about moving uid chamber has been developed, air was used as heat transfer uid and no uid storage was considered. Finally a comparison between the numerical solution and the obtained experimental data is done.
Resumo:
Tuberculosis (TB) is the primary cause of mortality among infectious diseases. Mycobacterium tuberculosis monophosphate kinase (TMPKmt) is essential to DNA replication. Thus, this enzyme represents a promising target for developing new drugs against TB. In the present study, the receptor-independent, RI, 4D-QSAR method has been used to develop QSAR models and corresponding 3D-pharmacophores for a set of 81 thymidine analogues, and two corresponding subsets, reported as inhibitors of TMPKmt. The resulting optimized models are not only statistically significant with r (2) ranging from 0.83 to 0.92 and q (2) from 0.78 to 0.88, but also are robustly predictive based on test set predictions. The most and the least potent inhibitors in their respective postulated active conformations, derived from each of the models, were docked in the active site of the TMPKmt crystal structure. There is a solid consistency between the 3D-pharmacophore sites defined by the QSAR models and interactions with binding site residues. Moreover, the QSAR models provide insights regarding a probable mechanism of action of the analogues.
Resumo:
This paper deals with the problem of spatial data mapping. A new method based on wavelet interpolation and geostatistical prediction (kriging) is proposed. The method - wavelet analysis residual kriging (WARK) - is developed in order to assess the problems rising for highly variable data in presence of spatial trends. In these cases stationary prediction models have very limited application. Wavelet analysis is used to model large-scale structures and kriging of the remaining residuals focuses on small-scale peculiarities. WARK is able to model spatial pattern which features multiscale structure. In the present work WARK is applied to the rainfall data and the results of validation are compared with the ones obtained from neural network residual kriging (NNRK). NNRK is also a residual-based method, which uses artificial neural network to model large-scale non-linear trends. The comparison of the results demonstrates the high quality performance of WARK in predicting hot spots, reproducing global statistical characteristics of the distribution and spatial correlation structure.