960 resultados para Reservoir simulation. Steam injection. Injector well. Coupled
Resumo:
Steam injection is the most used method of additional recovery for the extraction of heavy oil. In this type procedure is common to happen gravitational segregation and this phenomenon can affect the production of oil and therefore, it shoulds be considered in the projects of continuous steam injection. For many years, the gravitational segregation was not adequately considered in the calculation procedures in Reservoir Engineering. The effect of the gravity causes the segregation of fluids inside the porous media according to their densities. The results of simulation arising from reservoirs could provide the ability to deal with the gravity, and it became apparent that the effects of the gravity could significantly affect the performance of the reservoir. It know that the gravitational segregation can happen in almost every case where there is injection of light fluid, specially the steam, and occurs with greater intensity for viscous oil reservoirs. This work discusses the influence of some parameters of the rock-reservoir in segregation as viscosity, permeability, thickness, cover gas, porosity. From a model that shows the phenomenon with greater intensity, optimized some operational parameters as the rate flow rate steam, distance between the wells injector-producer, and interval of completion which contributed to the reduction in gravity override, thus increasing the oil recovery. It was shown a greater technical-economic viability for the model of distance between the wells 100 m. The analysis was performed using the simulator of CMG (Computer Modeling Group-Stars 2007.11, in which was observed by iterating between studied variables in heavy oil reservoirs with similar characteristics to Brazilian Northeast
Resumo:
The oil companies in the area in general are looking for new technologies that can increase the recovery factor of oil contained in reservoirs. These investments are mainly aimed at reducing the costs of projects which are high. Steam injection is one of these special methods of recovery in which steam is injected into the reservoir in order to reduce the viscosity of the oil and make it more mobile. The process assisted gravity drainage steam (SAGD) using steam injection in its mechanism, as well as two parallel horizontal wells. In this process steam is injected through the horizontal injection well, then a vapor chamber is formed by heating the oil in the reservoir and, by the action of gravitational forces, this oil is drained down to where the production well. This study aims to analyze the influence of pressure drop and heat along the injection well in the SAGD process. Numerical simulations were performed using the thermal simulator STARS of CMG (Computer Modeling Group). The parameters studied were the thermal conductivity of the formation, the flow of steam injection, the inner diameter of the column, the steam quality and temperature. A factorial design was used to verify the influence of the parameters studied in the recovery factor. We also analyzed different injection flow rates for the model with pressure drop and no pressure drop, as well as different maximum flow rates of oil production. Finally, we performed an economic analysis of the two models in order to check the profitability of the projects studied. The results showed that the pressure drop in injection well have a significant influence on the SAGD process.
Resumo:
Oil recovery using waterflooding has been until now the worldwide most applied method, specially for light oil recovery, its success is mainly because of the low costs involved and the facilities of the injection process. The Toe- To-Heel Waterflooding TTHWTM method uses a well pattern of vertical injector wells completed at the bottom of the reservoir and horizontal producer wells completed at the top of it. The main producing mechanism is gravitational segregation in short distance. This method has been studied since the early 90´s and it had been applied in Canada with positive results for light heavy oils, nevertheless it hasn´t been used in Brazil yet. In order to verify the applicability of the process in Brazil, a simulation study for light oil was performed using Brazilian northwest reservoirs characteristics. The simulations were fulfilled using the STARS module of the Computer Modelling Group Software, used to perform improved oil recovery studies. The results obtained in this research showed that the TTHWTM well pattern presented a light improvement in terms of recovery factor when compared to the conventional 5- Spot pattern, however, it showed lower results in the economic evaluation
Resumo:
Nowadays, most of the hydrocarbon reserves in the world are in the form of heavy oil, ultra - heavy or bitumen. For the extraction and production of this resource is required to implement new technologies. One of the promising processes for the recovery of this oil is the Expanding Solvent Steam Assisted Gravity Drainage (ES-SAGD) which uses two parallel horizontal wells, where the injection well is situated vertically above the production well. The completion of the process occurs upon injection of a hydrocarbon additive at low concentration in conjunction with steam. The steam adds heat to reduce the viscosity of the oil and solvent aids in reducing the interfacial tension between oil/ solvent. The main force acting in this process is the gravitational and the heat transfer takes place by conduction, convection and latent heat of steam. In this study was used the discretized wellbore model, where the well is discretized in the same way that the reservoir and each section of the well treated as a block of grid, with interblock connection with the reservoir. This study aims to analyze the influence of the pressure drop and heat along the injection well in the ES-SAGD process. The model used for the study is a homogeneous reservoir, semi synthetic with characteristics of the Brazilian Northeast and numerical simulations were performed using the STARS thermal simulator from CMG (Computer Modelling Group). The operational parameters analyzed were: percentage of solvent injected, the flow of steam injection, vertical distance between the wells and steam quality. All of them were significant in oil recovery factor positively influencing this. The results showed that, for all cases analyzed, the model considers the pressure drop has cumulative production of oil below its respective model that disregards such loss. This difference is more pronounced the lower the value of the flow of steam injection
Resumo:
Thermal methods made heavy oil production possible in fields where primary recovery failed. Throughout the years steam injection became one of the most important alternatives to increase heavy oil recovery. There are many types of steam injection, and one of them is the cyclic steam injection, which has been used with success in several countries, including Brazil. The process involves three phases: firstly, steam is injected, inside of the producing well; secondly, the well is closed (soak period); and finally, the well is put back into production. These steps constitute one cycle. The cycle is repeated several times until economical production limit is reached. Usually, independent of reservoir type, as the number of cycles increases the cyclic injection turns less efficient. This work aims to analyze rock and reservoir property influence in the cyclic steam injection. The objective was to study the ideal number of cycles and, consequently, process optimization. Simulations were realized using the STARS simulator from the CMG group based in a proposed reservoir model. It was observed that the reservoir thickness was the most important parameter in the process performance, whilst soaking time influence was not significant
Resumo:
With an increasing number of mature fields, heavy oil recovery has performed one of the great challenges of the oil industry. The Brazilian Northeast, for example, has numerous heavy oil reservoirs are explored with the use of thermal methods. Among the types of methods used for heavy oil, there is the method of in-situ combustion, a technique in which heat is produced within the container, unlike the injection of heated fluid when the heat is generated at the surface and transported to the reservoir. In this type of process, it is common to use vertical wells as injectors and producers. However, methods which use horizontal wells like oil producers are increasingly studied because of greater contact area between the formation and combustion front. Thus, the main objective of this work was to study the different configurations of wells (CIS THAITM and CAGD) in the process of in-situ combustion in oil recovery using a semi-synthetic tank with Brazilian Northeast features. The method "toe-to-heel air injection" (THAITM) is a process of enhanced oil recovery, which is the integration of in-situ combustion with technological advances in drilling horizontal wells. This method uses horizontal wells such as oil producers, keeping vertical injection wells for injecting air. The oil drain process by differential gravitational assisted with combustion (CAGD) is an integrated, in this configuration the horizontal injector well is drilled at the top formation with a horizontal production well in the lower section. The simulations were performed in a commercial program of thermal processes, called "STARS" (Steam, Thermal, and Advanced Processes Reservoir Simulator), the company CMG (Computer Modelling Group). An analysis of the air flow injection was performed and it was found that each method had a maximum injection to the base model, a show that through this air injection limit was reduced cumulative production of oil. Analyses of operating parameters were used: injection flow, configuration and completion of wells. In the sensitivity analysis we found that the air injection flow showed greater influence on THAI method, since the CIS method the completion of the wells was the most influential parameter and CAGD configuration wells showed the greatest influence in the recovered fraction. The economic results have shown that the best case obtained in CAGD method because, despite having higher initial cost showed the best financial return compared to the best cases the CIS and THAI.
Resumo:
With an increasing number of mature fields, heavy oil recovery has performed one of the great challenges of the oil industry. The Brazilian Northeast, for example, has numerous heavy oil reservoirs are explored with the use of thermal methods. Among the types of methods used for heavy oil, there is the method of in-situ combustion, a technique in which heat is produced within the container, unlike the injection of heated fluid when the heat is generated at the surface and transported to the reservoir. In this type of process, it is common to use vertical wells as injectors and producers. However, methods which use horizontal wells like oil producers are increasingly studied because of greater contact area between the formation and combustion front. Thus, the main objective of this work was to study the different configurations of wells (CIS THAITM and CAGD) in the process of in-situ combustion in oil recovery using a semi-synthetic tank with Brazilian Northeast features. The method "toe-to-heel air injection" (THAITM) is a process of enhanced oil recovery, which is the integration of in-situ combustion with technological advances in drilling horizontal wells. This method uses horizontal wells such as oil producers, keeping vertical injection wells for injecting air. The oil drain process by differential gravitational assisted with combustion (CAGD) is an integrated, in this configuration the horizontal injector well is drilled at the top formation with a horizontal production well in the lower section. The simulations were performed in a commercial program of thermal processes, called "STARS" (Steam, Thermal, and Advanced Processes Reservoir Simulator), the company CMG (Computer Modelling Group). An analysis of the air flow injection was performed and it was found that each method had a maximum injection to the base model, a show that through this air injection limit was reduced cumulative production of oil. Analyses of operating parameters were used: injection flow, configuration and completion of wells. In the sensitivity analysis we found that the air injection flow showed greater influence on THAI method, since the CIS method the completion of the wells was the most influential parameter and CAGD configuration wells showed the greatest influence in the recovered fraction. The economic results have shown that the best case obtained in CAGD method because, despite having higher initial cost showed the best financial return compared to the best cases the CIS and THAI.
Resumo:
Steam injection is the most used method of additional recovery for the extraction of heavy oil. In this type procedure is common to happen gravitational segregation and this phenomenon can affect the production of oil and therefore, it shoulds be considered in the projects of continuous steam injection. For many years, the gravitational segregation was not adequately considered in the calculation procedures in Reservoir Engineering. The effect of the gravity causes the segregation of fluids inside the porous media according to their densities. The results of simulation arising from reservoirs could provide the ability to deal with the gravity, and it became apparent that the effects of the gravity could significantly affect the performance of the reservoir. It know that the gravitational segregation can happen in almost every case where there is injection of light fluid, specially the steam, and occurs with greater intensity for viscous oil reservoirs. This work discusses the influence of some parameters of the rock-reservoir in segregation as viscosity, permeability, thickness, cover gas, porosity. From a model that shows the phenomenon with greater intensity, optimized some operational parameters as the rate flow rate steam, distance between the wells injector-producer, and interval of completion which contributed to the reduction in gravity override, thus increasing the oil recovery. It was shown a greater technical-economic viability for the model of distance between the wells 100 m. The analysis was performed using the simulator of CMG (Computer Modeling Group-Stars 2007.11, in which was observed by iterating between studied variables in heavy oil reservoirs with similar characteristics to Brazilian Northeast
Resumo:
The oil companies in the area in general are looking for new technologies that can increase the recovery factor of oil contained in reservoirs. These investments are mainly aimed at reducing the costs of projects which are high. Steam injection is one of these special methods of recovery in which steam is injected into the reservoir in order to reduce the viscosity of the oil and make it more mobile. The process assisted gravity drainage steam (SAGD) using steam injection in its mechanism, as well as two parallel horizontal wells. In this process steam is injected through the horizontal injection well, then a vapor chamber is formed by heating the oil in the reservoir and, by the action of gravitational forces, this oil is drained down to where the production well. This study aims to analyze the influence of pressure drop and heat along the injection well in the SAGD process. Numerical simulations were performed using the thermal simulator STARS of CMG (Computer Modeling Group). The parameters studied were the thermal conductivity of the formation, the flow of steam injection, the inner diameter of the column, the steam quality and temperature. A factorial design was used to verify the influence of the parameters studied in the recovery factor. We also analyzed different injection flow rates for the model with pressure drop and no pressure drop, as well as different maximum flow rates of oil production. Finally, we performed an economic analysis of the two models in order to check the profitability of the projects studied. The results showed that the pressure drop in injection well have a significant influence on the SAGD process.
Resumo:
Oil recovery using waterflooding has been until now the worldwide most applied method, specially for light oil recovery, its success is mainly because of the low costs involved and the facilities of the injection process. The Toe- To-Heel Waterflooding TTHWTM method uses a well pattern of vertical injector wells completed at the bottom of the reservoir and horizontal producer wells completed at the top of it. The main producing mechanism is gravitational segregation in short distance. This method has been studied since the early 90´s and it had been applied in Canada with positive results for light heavy oils, nevertheless it hasn´t been used in Brazil yet. In order to verify the applicability of the process in Brazil, a simulation study for light oil was performed using Brazilian northwest reservoirs characteristics. The simulations were fulfilled using the STARS module of the Computer Modelling Group Software, used to perform improved oil recovery studies. The results obtained in this research showed that the TTHWTM well pattern presented a light improvement in terms of recovery factor when compared to the conventional 5- Spot pattern, however, it showed lower results in the economic evaluation
Resumo:
Nowadays, most of the hydrocarbon reserves in the world are in the form of heavy oil, ultra - heavy or bitumen. For the extraction and production of this resource is required to implement new technologies. One of the promising processes for the recovery of this oil is the Expanding Solvent Steam Assisted Gravity Drainage (ES-SAGD) which uses two parallel horizontal wells, where the injection well is situated vertically above the production well. The completion of the process occurs upon injection of a hydrocarbon additive at low concentration in conjunction with steam. The steam adds heat to reduce the viscosity of the oil and solvent aids in reducing the interfacial tension between oil/ solvent. The main force acting in this process is the gravitational and the heat transfer takes place by conduction, convection and latent heat of steam. In this study was used the discretized wellbore model, where the well is discretized in the same way that the reservoir and each section of the well treated as a block of grid, with interblock connection with the reservoir. This study aims to analyze the influence of the pressure drop and heat along the injection well in the ES-SAGD process. The model used for the study is a homogeneous reservoir, semi synthetic with characteristics of the Brazilian Northeast and numerical simulations were performed using the STARS thermal simulator from CMG (Computer Modelling Group). The operational parameters analyzed were: percentage of solvent injected, the flow of steam injection, vertical distance between the wells and steam quality. All of them were significant in oil recovery factor positively influencing this. The results showed that, for all cases analyzed, the model considers the pressure drop has cumulative production of oil below its respective model that disregards such loss. This difference is more pronounced the lower the value of the flow of steam injection
Resumo:
The processes that govern the predictability of decadal variations in the North Atlantic meridional overturning circulation (MOC) are investigated in a long control simulation of the ECHO-G coupled atmosphere–ocean model. We elucidate the roles of local stochastic forcing by the atmosphere, and other potential ocean processes, and use our results to build a predictive regression model. The primary influence on MOC variability is found to come from air–sea heat fluxes over the Eastern Labrador Sea. The maximum correlation between such anomalies and the variations in the MOC occurs at a lead time of 2 years, but we demonstrate that the MOC integrates the heat flux variations over a period of 10 years. The corresponding univariate regression model accounts for 74.5% of the interannual variability in the MOC (after the Ekman component has been removed). Dense anomalies to the south of the Greenland-Scotland ridge are also shown to precede the overturning variations by 4–6 years, and provide a second predictor. With the inclusion of this second predictor the resulting regression model explains 82.8% of the total variance of the MOC. This final bivariate model is also tested during large rapid decadal overturning events. The sign of the rapid change is always well represented by the bivariate model, but the magnitude is usually underestimated, suggesting that other processes are also important for these large rapid decadal changes in the MOC.
Resumo:
Novel cementing materials formulations containing flexible polymeric admixtures have been studied aiming at improving the mechanical behavior of oil well cement slurries submitted to steam injection. However, research activities in this sector are still under development. The steam injected directly into the well causes casing dilation, which after a reduction in temperature, tends to return to its original dimensions, resulting in crack formation and hydraulic isolation loss of the well, which will result in shortening of well life. In this scenario, the objective of the present study was to evaluate the mechanical behavior of Portland-based slurries containing SBR latex, applied in oil well cementing of wells submitted to steam injection. Were formulated slurries with densities of 1.797 g/cm3 (15.0 lb/Gal) and 1.869 g/cm3 (15.6 lb/Gal), containing admixtures with a latex concentration of 0; 66.88; 133.76; 200.64 and 267.52 L/m3 (0, 0.5, 1.0, 1.5 and 2.0 gpc). Tests including rheology, fluid loss control, thickening time, API compressive strength and splitting tensile strength, beyond steam injection simulation. Microstrutural characteristics of the slurries were also performed (XRD, TG, FTIR and SEM). The results showed that increasing the polymer concentration increased in the rheological properties and fluid loss, and a decrease in the elasticity modulus of the cement slurries. The results obtained showed that the slurries can be applied in cementing operations of oil wells submitted to steam injection.
Resumo:
Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)
Resumo:
The behavior of the fluid flux in oil fields is influenced by different factors and it has a big impact on the recovery of hydrocarbons. There is a need of evaluating and adapting the actual technology to the worldwide reservoirs reality, not only on the exploration (reservoir discovers) but also on the development of those that were already discovered, however not yet produced. The in situ combustion (ISC) is a suitable technique for these recovery of hydrocarbons, although it remains complex to be implemented. The main objective of this research was to study the application of the ISC as an advanced oil recovery technique through a parametric analysis of the process using vertical wells within a semi synthetic reservoir that had the characteristics from the brazilian northwest, in order to determine which of those parameters could influence the process, verifying the technical and economical viability of the method on the oil industry. For that analysis, a commercial reservoir simulation program for thermal processes was used, called steam thermal and advanced processes reservoir simulator (STARS) from the computer modeling group (CMG). This study aims, through the numerical analysis, find results that help improve mainly the interpretation and comprehension of the main problems related to the ISC method, which are not yet dominated. From the results obtained, it was proved that the mediation promoted by the thermal process ISC over the oil recovery is very important, with rates and cumulated production positively influenced by the method application. It was seen that the application of the method improves the oil mobility as a function of the heating when the combustion front forms inside the reservoir. Among all the analyzed parameters, the activation energy presented the bigger influence, it means, the lower the activation energy the bigger the fraction of recovered oil, as a function of the chemical reactions speed rise. It was also verified that the higher the enthalpy of the reaction, the bigger the fraction of recovered oil, due to a bigger amount of released energy inside the system, helping the ISC. The reservoir parameters: porosity and permeability showed to have lower influence on the ISC. Among the operational parameters that were analyzed, the injection rate was the one that showed a stronger influence on the ISC method, because, the higher the value of the injection rate, the higher was the result obtained, mainly due to maintaining the combustion front. In connection with the oxygen concentration, an increase of the percentage of this parameter translates into a higher fraction of recovered oil, because the quantity of fuel, helping the advance and the maintenance of the combustion front for a longer period of time. About the economic analysis, the ISC method showed to be economically feasible when evaluated through the net present value (NPV), considering the injection rates: the higher the injection rate, the higher the financial incomes of the final project