1000 resultados para Reservoir sedimentation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the mesotrophic-eutrophic Saidenbach Reservoir in Saxony, the nanoplankton and cyanobacteria have increased at the expense of diatom dominance, due to a doubling of the external phosphorus load in the last 15 years. However, the phosphorus sedimentation flux is still very high (up to 80% of the input), corresponding to more than 2 g m2 d-1 in terms of dry weight. There is a strong correlation between the abundance of diatoms in the euphotic zone and their sedimentation flux (with a delay of about 2 weeks). Only about 25% of the deposited material could be clearly attributed to plankton biomass; the remainder resulted from flocculation and precipitation processes or directly from the inflow of clay minerals. The ash content of the deposited material was high (73%). Thus the sedimentation flux can be considered to operate as an internal water-treatment/oligotrophication process within the lake. The neighbouring Neunzehnhain Reservoir still has a very clear water with a transparency up to 18 m depth. Though the sediment was not much lower than Saidenbach sediment in total phosphorus and total numbers of bacteria, sulphide was always absent and the ratio of Fe 2+ to Fe 3+ was very low in the upper (0- 5 cm) layer. Thus the external and internal phosphorus loads do not attain the critical level necessary to induce a ”phosphorus - phytoplankton” feedback loop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências do Mar, da Terra e do Ambiente, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Suspended particles and dissolved substances in water provide reactive surfaces, influence metabolic activity and contribute to the net sediment deposition. It therefore plays an important part in the ecology and quality of the water mass. The water quality in reservoirs is crucial and it is naturally maintained by flushing and sedimentation, which continuously remove phosphorus from the water. In some reservoirs, however, these removal processes are countered by recycling of ions which could play a key role to start and/or maintain the eutrophic state. The combination of macro-, trace- and microanalysis techniques can be useful to trace pollution sources through a chemical fingerprint, whether be during an acute environmental disaster or a long-term release of pollutants. The water quality and total metal content of reservoir sediments were assessed in a reservoir, situated in the capital of the Parana State, in the South-Eastern part of Brazil. The goal of this paper was to determine the metal presence in the sediment and metal and ionic speciation in the Green River reservoir water. Water and bed sediment samples, collected from various sites during 2008 and 2009, were investigated using XRF, ICP-OES, ICP-MS, XRD and zeta potential measurements. Based on the results, the heavy metal concentration and chemical composition of the suspended matter in the water samples, as well as the sediment's chemical composition will be discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to monitor the evolution of the British-Irish Ice Sheet (BIIS) and its influence in surface ocean structure during marine isotopic stages (MIS) 2 and 3, we have analyzed the sediments recovered in core MD04-2829CQ (Rosemary Bank, north Rockall Trough, northeast Atlantic) dated between ~41 and ~18 ka B.P. Ice-rafted debris flux and composition, 40Ar/39Ar ages of individual hornblende grains, multispecies planktonic stable isotope records, planktonic foraminifera assemblage data and faunal-based sea surface temperatures (SSTs) demonstrate a close interaction between BIIS dynamics and surface ocean structure and water properties in this region. The core location lies beneath the North Atlantic Current (NAC) and is ideal for monitoring the shifts in the position of its associated oceanic fronts, as recorded by faunal changes. These data reveal a succession of BIIS-sourced iceberg calving events related to low SST, usually synchronous with dramatic changes in the composition of the planktonic foraminifera assemblage and with variations in the stable isotope records of the taxa Neogloboquadrina pachyderma (sinistral coiling) and Globigerina bulloides. The pacing of the calving events, from typically Dansgaard-Oeschger millennial timescales during late MIS 3 to multicentennial cyclicity from ~28 ka B.P., represents the build-up of the BIIS and its growing instability toward Heinrich Event (HE) 2 and the Last Glacial Maximum. Our data confirm the strong coupling between BIIS instabilities and the temperature and salinity of surface waters in the adjacent northeast Atlantic and demonstrate the BIIS's ability to modify the NAC on its flow toward the Nordic Seas. In contrast, subsurface water masses were less affected except during the Greenland stadials that contain HEs, when most intense water column reorganizations occurred simultaneously with the deposition of cream-colored carbonate sourced from the Laurentide Ice Sheet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hole 887B of the Ocean Drilling Program (ODP) comprises a 44 m (750 kyr) long continuous section recovered from the Patton-Murray Rise, an elevated plateau that is largely isolated from turbidite deposition. The Patton-Murray area is centered under the Alaska Gyre, a region characterized by the domal upwelling of nutrient-rich waters. Marked increases in productivity and rapid settling of biogenic matter are suggested throughout the section by the episodic accumulation of diatomaceous oozes up to ~1 m thick that are accompanied by barium enrichments. Significant delta13Corg maxima in the major diatomaceous bands suggest that mixedlayer [CO2(aq)] may have been drawn down significantly during some of the productivity events. The episodes of enhanced productivity at Site 887 occur synchronously with short-lived minima in planktonic foram delta18O, suggesting a direct link to low salinity, or less likely, warming, events in the Gulf of Alaska. There is no obvious explanation for the events, but they may be related to seasonal incursions of meltwater from Alaska. We speculate that episodic input of meltwater- or dust-borne iron from Asian or Alaskan sources may have promoted the extraordinary diatom production events recorded in the sedimentary record.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A north-south transect of 17 cores was constructed along the eastern boundary of the California Current system from 33° to 42°N to investigate the changes in biogenic sedimentation over the past 30 kyr. Percentages and mass accumulation rates of CaCO3, Corg, and biogenic opal were assembled at 500 to 1000 years/sample to provide relatively high resolution. Time-space maps reveal a complex pattern of changes that do not follow a simple glacial-interglacial two-mode model. Biogenic sedimentation shows responses that are sometimes time-transgressive and sometimes coeval, and most of the responses show more consistency within a limited geographic area than any temporal consistency. Reconstructed conditions during late oxygen isotope stage 3 were more like early Holocene conditions than any other time during the last 30 kyr. Coastal upwelling and productivity during oxygen isotope stage 3 were relatively strong along the central California margin but were weak along the northern California margin. Precipitation increased during the last glacial interval in the central California region, and the waters of the southern California margin had relatively low productivity. Productivity on the southern Oregon margin was relatively low at the beginning of the last glacial interval, but by about 20 ka, productivity in this area significantly increased. This change suggests that the center of the divergence of the West Wind Drift shifted south at this time. The end of the last glacial interval was characterized by increased productivity in the southern California margin and increased upwelling along the central California margin but upwelling remained weak along the northern California margin. A sudden (<300 years) decrease in CaCO3, Corg, and biogenic opal occurred at 13 ka. The changes suggest a major reorientation of the atmospheric circulation in the North Pacific and western North America and the establishment of a strong seasonality in the central California region. A carbonate preservation event occurred at 10 ka that appears to reflect the uptake of CO2 by the terrestrial biosphere as the northern latitudes were reforested following retreat of the glaciers. The Holocene has been a period of relatively high productivity in the southern California margin, relatively strong coastal upwelling along the central California margin, relatively weak upwelling along the northern California margin, and the northward migration of the divergence zone of the West Wind Drift.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we search for evidence of the existence of a sub-chondritic 142Nd/144Nd reservoir that balances the Nd isotope chemistry of the Earth relative to chondrites. If present, it may reside in the source region of deeply sourced mantle plume material. We suggest that lavas from Hawai’i with coupled elevations in 186Os/188Os and 187Os/188Os, from Iceland that represent mixing of upper mantle and lower mantle components, and from Gough with sub-chondritic 143Nd/144Nd and high 207Pb/206Pb, are favorable samples that could reflect mantle sources that have interacted with an Early-Enriched Reservoir (EER) with sub-chondritic 142Nd/144Nd. High-precision Nd isotope analyses of basalts from Hawai’i, Iceland and Gough demonstrate no discernable 142Nd/144Nd deviation from terrestrial standards. These data are consistent with previous high-precision Nd isotope analysis of recent mantle-derived samples and demonstrate that no mantle-derived material to date provides evidence for the existence of an EER in the mantle. We then evaluate mass balance in the Earth with respect to both 142Nd/144Nd and 143Nd/144Nd. The Nd isotope systematics of EERs are modeled for different sizes and timing of formation relative to ε143Nd estimates of the reservoirs in the μ142Nd = 0 Earth, where μ142Nd is ((measured 142Nd/144Nd/terrestrial standard 142Nd/144Nd)−1 * 10−6) and the μ142Nd = 0 Earth is the proportion of the silicate Earth with 142Nd/144Nd indistinguishable from the terrestrial standard. The models indicate that it is not possible to balance the Earth with respect to both 142Nd/144Nd and 143Nd/144Nd unless the μ142Nd = 0 Earth has a ε143Nd within error of the present-day Depleted Mid-ocean ridge basalt Mantle source (DMM). The 4567 Myr age 142Nd–143Nd isochron for the Earth intersects μ142Nd = 0 at ε143Nd of +8 ± 2 providing a minimum ε143Nd for the μ142Nd = 0 Earth. The high ε143Nd of the μ142Nd = 0 Earth is confirmed by the Nd isotope systematics of Archean mantle-derived rocks that consistently have positive ε143Nd. If the EER formed early after solar system formation (0–70 Ma) continental crust and DMM can be complementary reservoirs with respect to Nd isotopes, with no requirement for significant additional reservoirs. If the EER formed after 70 Ma then the μ142Nd = 0 Earth must have a bulk ε143Nd more radiogenic than DMM and additional high ε143Nd material is required to balance the Nd isotope systematics of the Earth.