947 resultados para Removal of organic matter
Resumo:
Trace elements associated with organic subfractions (humic, fulvic, and non-humic substances) were identified for seven core sediments from Lake Mariut, Egypt. Results indicated that the amounts of trace metals in humic acid and non-humic substances decreased in the following order: Zn>Cu>Pb>Cr>Cd, while in fulvic acid the order the order was Cu>Zn>Pb>Cr>Cd. There is a higher contribution of Zn, Pb, Cu and Cr in humic acid compared to fulvic acid in most samples. Slight changes in the amounts of cadmium bounded with humic and fulvic acids was also found.
The effect of organic matter accumulation on phosphorus release in sediment of Chinese shallow lakes
Resumo:
The effects of organic matter in sediment on phosphorus release were studied by field investigations in eight Chinese shallow freshwater lakes with different trophic status and a laboratory experiment. The sediment organic matter content paralleled the trophic status, ranging from 6.1 to 173.0 g kg(-1) (dry weight), with the mean value of 63.1 g kg(-1) (dry weight). It was positively proportional to Soluble reactive phosphorus concentration in the interstitial water in a form of exponential function, but inversely related to the sediment Fe/P ratio. The sediment alkaline phosphatase activity was significantly related not only to the organic matter content (r = 0.829, P < 0.01, n = 120), but also to the soluble reactive phosphorus concentration in interstitial water (r = 0.454, P < 0.01, n = 42). In the laboratory experiment, the addition of organic matter (dry materials of an aquatic macrophyte) into the sediment significantly enhanced alkaline phosphatase activity and soluble reactive phosphorus release. However, in the treatment with organic matter added and aeration, this release was generally prevented in spite of an increase in APA. Hence, sediment organic matter can effectively accelerate phosphorus release by enzymatic hydrolysis and anaerobic desorption. The latter mechanism seems to be more important.
Resumo:
To examine the source and preservation of organic matter in the shelf sediments of the East China Sea (ECS), we measured bulk C/N and isotopes, organic biomarkers (n-alkanes and fatty acids) and compound-specific (fatty acids) stable carbon isotope ratios in three sediment cores collected from two sites near the Changjiang Estuary and one in the ECS shelf. Contrasting chemical and isotopic compositions of organic matter were observed between the estuarine and shelf sediments. The concentrations of total n-alkanes and fatty acids in the shelf surface sediments (0-2 cm) were 5-10 times higher than those in estuarine surface sediments but they all decreased rapidly to comparable levels below the surface layer. The compositions of n-alkanes in the estuarine sediments were dominated by C-26-C-33 long-chain n-alkanes with a strong odd-to-even carbon number predominance. In contrast, the composition of n-alkanes in the shelf sediment was dominated by nC(15) to nC(22) compounds. Long-chain (> C-20) fatty acids (terrestrial biomarkers) accounted for a significantly higher fraction in the estuarine sediments compared to that in the shelf sediment, while short-chain (< C-20) saturated and unsaturated fatty acids were more abundant in the shelf surface sediments than in the estuarine sediments. Stable carbon isotopic ratios of individual fatty acids showed a general positive shift from estuarine to shelf sediments, consistent with the variations in bulk delta(CTOCTOC)-C-13. These contrasts between the estuarine and shelf sediments indicate that terrestrial organic matter was mainly deposited within the Changjiang Estuary and inner shelf of ECS. Post-depositional diagenetic processes in the surface sediments rapidly altered the chemical compositions and control the preservation of organic matter in the region.
Resumo:
Elemental (TOC, TN, C/N) and stable carbon isotopic (delta(13)C) compositions and n-alkane (nC(16-38)) concentrations were measured for Spartina alterniflora, a C-4 marsh grass, Typha latifolia, a C-3 marsh grass, and three sediment cores collected from middle and upper estuarine sites from the Plum Island salt marshes. Our results indicated that the organic matter preserved in the sediments was highly affected by the marsh plants that dominated the sampling sites. delta(13)C values of organic matter preserved in the upper fresh water site sediment were more negative (-23.0+/-0.3) as affected by the C-3 plants than the values of organic matter preserved in the sediments of middle (-18.9+/-0.8) and mud flat sites (-19.4+/-0.1) as influenced mainly by the C4 marsh plants. The distribution of n-alkanes measured in all sediments showed similar patterns as those determined in the marsh grasses S. alterniflora and T. latifolia, and nC(21) to nC(33) long-chain n-alkanes were the major compounds determined in all sediment samples. The strong odd-to-even carbon numbered n-alkane predominance was found in all three sediments and nC(29) was the most abundant homologue in all samples measured. Both delta(13)C compositions of organic matter and n-alkane distributions in these sediments indicate that the marsh plants could contribute significant amount of organic matter preserved in Plum Island salt marsh sediments. This suggests that salt marshes play an important role in the cycling of nutrients and organic carbon in the estuary and adjacent coastal waters. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic. (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Ectomycorrhizal fungi and saprotrophic microorganisms coexist and interact in the mycorrhizosphere. We review what is known regarding these interactions and how they may influence processes such as ectomycorrhiza formation, mycelial growth, and the dynamics of carbon movement to and within the rhizosphere. Particular emphasis is placed on the potential importance of interactions in decomposition of soil organic matter and degradation of persistant organic pollutants in soil. While our knowledge is currently fairly limited, it seems likely that interactions have profound effects on mycorrhizosphere processes. More extensive research is warranted to provide novel insights into mycorrhizosphere ecology and to explore the potential for manipulating the ectomycorrhizosphere environment for biotechnological purposes.
Resumo:
Pharmaceuticals and personal care products (PPCPs) are widely used on a daily basis. After their usage they reach the wastewater treatment plants (WWTPs). These compounds have different physico-chemical characteristics, which makes them difficult to completely remove in the WWTPs, througth conventional treatments. Currently, there is no legislation regarding PPCPs thresholds in effluent discharge. But, even at vestigial concentrations, these compounds enclose environmental risks due to, e.g., endocrine disruption potential. There is a need of alternative techniques for their removal in WWTPs. The main goal of this work was to assess the use of electrodialytic (ED) process to remove PPCPs from the effluent to be discharged. A two-compartment ED cell was used testing (i) the effluent position in the cell (anode and cathode compartment); (ii) the use of anion (AEM) and cation exchange membrane (CEM); (iii) the treatment period (6, 12 and 24 hours); (iv) effluent recirculation and current steps; (v) the feasibility of sequential treatments. Phosphorus (P) removal from effluent and energetic costs associated to the process were also evaluated. Five PPCPs were studied – caffeine (CAF), bisphenol A (BPA), 17 β-estradiol (E2), ethinyl estradiol (EE2) and oxybenzone (MBPh). The ED process showed to be effective in the removal when effluent is in the anode compartment. Oxidation is suggested to be the main removal process, which was between 88 and 96%, for all the compounds, in 6 hours. Nevertheless, the presence of intermediates and/or by-products was also observed in some cases. Effluent recirculation should have a retention time in the ED cell big enough to promote removal whereas the current steps (effluent in anode compartment) slightly increased removal efficiencies (higher than 80% for all PPCPs). The sequential set of ED treatment (effluent in anode compartment) showed to be effective during both periods with a removal percentage between 80 and 95% and 73 to 88% in the case of AEM and CEM, respectively. Again, the main removal process is strongly suggested to be oxidation in the anode compartment. However, there was an increase of BOD5 and COD, which might be explained by effluent spiking, these parameters limiting the effluent discharge. From these treatments, the use of AEM, enhanced the P removal from effluent to minimize risk of eutrophication. Energetic costs of the best set-up (6 hours) are approximately 0,8€/m3 of wastewater, a value considered low, attending to the prices of other treatment processes.
Resumo:
The present study which is the first of its kind in this region is an attempt to generate adequate information on the relative abundances, the seasonal and spatial variations as well as on the source and fate of organic compounds found associated with the dissolved, particulate and sedimentary compartments of Chalakudy river system. The study aimed at investigating variations, the relative proportion of dissolved, particulate and sedimentary fractions of these materials as well as the pollution extent so as to be able to comment on the present condition of this river-estuarine system. This thesis focuses attention on the role of biogeoorganics in modifying the ecological and environmental condition of the dissolved, particuIate and sediment compartments with their minute variability subjected to various physical, chemical and biogeochemical processes. A scheme of study encompassing all these objectives provides the frame work for the present investigation.
Resumo:
Cochin estuarine system is among the most productive aquatic environment along the Southwest coast of India, exhibits unique ecological features and possess greater socioeconomic relevance. Serious investigations carried out during the past decades on the hydro biogeochemical variables pointed out variations in the health and ecological functioning of this ecosystem. Characterisation of organic matter in the estuary has been attempted in many investigations. But detailed studies covering the degradation state of organic matter using molecular level approach is not attempted. The thesis entitled Provenance, Isolation and Characterisation of Organic Matter in the Cochin Estuarine Sediment-“ A Diagenetic Amino Acid Marker Scenario” is an integrated approach to evaluate the source, quantity, quality, and degradation state of the organic matter in the surface sediments of Cochin estuarine system with the combined application of bulk and molecular level tools. Sediment and water samples from nine stations situated at Cochin estuary were collected in five seasonal sampling campaigns, for the biogeochemical assessment and their distribution pattern of sedimentary organic matter. The sampling seasons were described and abbreviated as follows: April- 2009 (pre monsoon: PRM09), August-2009 (monsoon: MON09), January-2010 (post monsoon: POM09), April-2010 (pre monsoon: PRM10) and September- 2012 (monsoon: MON12). In order to evaluate the general environmental conditions of the estuary, water samples were analysed for water quality parameters, chlorophyll pigments and nutrients by standard methods. Investigations suggested the fact that hydrographical variables and nutrients in Cochin estuary supports diverse species of flora and fauna. Moreover the sedimentary variables such as pH, Eh, texture, TOC, fractions of nitrogen and phosphorous were determined to assess the general geochemical setting as well as redox status. The periodically fluctuating oxic/ anoxic conditions and texture serve as the most significant variables controlling other variables of the aquatic environment. The organic matter in estuary comprise of a complex mixture of autochthonous as well as allochthonous materials. Autochthonous input is limited or enhanced by the nutrient elements like N and P (in their various fractions), used as a tool to evaluate their bioavailability. Bulk parameter approach like biochemical composition, stoichiometric elemental ratios and stable carbon isotope ratio was also employed to assess the quality and quantity of sedimentary organic matter in the study area. Molecular level charactersation of free sugars and amino acids were carried out by liquid chromatographic techniques. Carbohydrates are the products of primary production and their occurrence in sediments as free sugars can provide information on the estuarine productivity. Amino acid biogeochemistry provided implications on the system productivity, nature of organic matter as well as degradation status of the sedimentary organic matter in the study area. The predominance of carbohydrates over protein indicated faster mineralisation of proteinaceous organic matter in sediments and the estuary behaves as a detrital trap for the accumulation of aged organic matter. The higher lipid content and LPD/CHO ratio pointed towards the better food quality that supports benthic fauna and better accumulation of lipid compounds in the sedimentary environment. Allochthonous addition of carbohydrates via terrestrial run off was responsible for the lower PRT/CHO ratio estimated in thesediments and the lower ratios also denoted a detrital heterotrophic environment. Biopolymeric carbon and the algal contribution to BPC provided important information on the better understanding the trophic state of the estuarine system and the higher values of chlorophyll-a to phaeophytin ratio indicated deposition of phytoplankton to sediment at a rapid rate. The estimated TOC/TN ratios implied the combined input of both terrestrial and autochthonous organic matter to sedimentsAmong the free sugars, depleted levels of glucose in sediments in most of the stations and abundance of mannose at station S5 was observed during the present investigation. Among aldohexoses, concentration of galactose was found to be higher in most of the stationsRelative abundance of AAs in the estuarine sediments based on seasons followed the trend: PRM09-Leucine > Phenylalanine > Argine > Lysine, MON09-Lysine > Aspartic acid > Histidine > Tyrosine > Phenylalanine, POM09-Lysine > Histadine > Phenyalanine > Leucine > Methionine > Serine > Proline > Aspartic acid, PRM10-Valine > Aspartic acid > Histidine > Phenylalanine > Serine > Proline, MON12-Lysine > Phenylalanine > Aspartic acid > Histidine > Valine > Tyrsine > MethionineThe classification of study area into three zones based on salinity was employed in the present study for the sake of simplicity and generalized interpretations. The distribution of AAs in the three zones followed the trend: Fresh water zone (S1, S2):- Phenylalanine > Lysine > Aspartic acid > Methionine > Valine ῀ Leucine > Proline > Histidine > Glycine > Serine > Glutamic acid > Tyrosine > Arginine > Alanine > Threonine > Cysteine > Isoleucine. Estuarine zone (S3, S4, S5, S6):- Lysine > Aspartic acid > Phenylalanine > Leucine > Valine > Histidine > Methionine > Tyrosine > Serine > Glutamic acid > Proline > Glycine > Arginine > Alanine > Isoleucine > Cysteine > Threonine. Riverine /Industrial zone (S7, S8, S9):- Phenylalanine > Lysine > Aspartic acid > Histidine > Serine > Arginine > Tyrosine > Leucine > Methionine > Glutamic acid > Alanine > Glycine > Cysteine > Proline > Isoleucine > Threonine > Valine. The abundance of AAs like glutamic acid, aspartic acid, isoleucine, valine, tyrosine, and phenylalanine in sediments of the study area indicated freshly derived organic matter.
Resumo:
Soil organic matter (SOM) vitally impacts all soil functions and plays a key role in the global carbon (C) cycle. More than 70% of the terrestric C stocks that participate in the active C cycle are stored in the soil. Therefore, quantitative knowledge of the rates of C incorporation into SOM fractions of different residence time is crucial to understand and predict the sequestration and stabilization of soil organic carbon (SOC). Consequently, there is a need of fractionation procedures that are capable of isolating functionally SOM fractions, i.e. fractions that are defined by their stability. The literature generally refers to three main mechanisms of SOM stabilization: protection of SOM from decomposition by (i) its structural composition, i.e. recalcitrance, (ii) spatial inaccessibility and/or (iii) interaction with soil minerals and metal ions. One of the difficulties in developing fractionation procedures for the isolation of functional SOM fractions is the marked heterogeneity of the soil environment with its various stabilization mechanisms – often several mechanisms operating simultaneously – in soils and soil horizons of different texture and mineralogy. The overall objective of the present thesis was to evaluate present fractionation techniques and to get a better understanding of the factors of SOM sequestration and stabilization. The first part of this study is attended to the structural composition of SOM. Using 13C cross-polarization magic-angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, (i) the effect of land use on SOM composition was investigated and (ii) examined whether SOM composition contributes to the different stability of SOM in density and aggregate fractions. The second part of the present work deals with the mineral-associated SOM fraction. The aim was (iii) to evaluate the suitability of chemical fractionation procedures used in the literature for the isolation of stable SOM pools (stepwise hydrolysis, treatments using oxidizing agents like Na2S2O8, H2O2, and NaOCl as well as demineralization of the residue obtained by the NaOCl treatment using HF (NaOCl+HF)) by pool sizes, 13C and 14C data. Further, (iv) the isolated SOM fractions were compared to the inert organic matter (IOM) pool obtained for the investigated soils using the Rothamsted Carbon Model and isotope data in order to see whether the tested chemical fractionation methods produce SOM fractions capable to represent this pool. Besides chemical fractionation, (v) the suitability of thermal oxidation at different temperatures for obtaining stable SOC pools was evaluated. Finally, (vi) the short-term aggregate dynamics and the factors that impact macroaggregate formation and C stabilization were investigated by means of an incubation study using treatments with and without application of 15N labeled maize straw of different degradability (leaves and coarse roots). All treatments were conducted with and without the addition of fungicide. Two study sites with different soil properties and land managements were chosen for these investigations. The first one, located at Rotthalmünster, is a Stagnic Luvisol (silty loam) under different land use regimes. The Ah horizons of a spruce forest and continuous grassland and the Ap and E horizons of two plots with arable crops (continuous maize and wheat cropping) were examined. The soil of the second study site, located at Halle, is a Haplic Phaeozem (loamy sand) where the Ap horizons of two plots with arable crops (continuous maize and rye cropping) were investigated. Both study sites had a C3-/C4-vegetational change on the maize plot for the purpose of tracing the incorporation of the younger, maize-derived C into different SOM fractions and the calculation of apparent C turnover times of these. The Halle site is located near a train station and industrial areas, which caused a contamination with high amounts of fossil C. The investigation of aggregate and density fractions by 13C CPMAS NMR spectroscopy revealed that density fractionation isolated SOM fractions of different composition. The consumption of a considerable part (10–20%) of the easily available O-alkyl-C and the selective preservation of the more recalcitrant alkyl-C when passing from litter to the different particulate organic matter (POM) fractions suggest that density fractionation was able to isolate SOM fractions with different degrees of decomposition. The spectra of the aggregate fractions resembled those of the mineral-associated SOM fraction obtained by density fractionation and no considerable differences were observed between aggregate size classes. Comparison of plant litter, density and aggregate size fractions from soil under different land use showed that the type of land use markedly influenced the composition of SOM. While SOM of the acid forest soil was characterized by a large content (> 50%) of POM, which contained high amounts of spruce-litter derived alkyl-C, the organic matter in the biologically more active grassland and arable soils was dominated by mineral-associated SOM (> 95%). This SOM fraction comprised greater proportions of aryl- and carbonyl-C and is considered to contain a higher amount of microbially-derived organic substances. Land use can alter both, structure and stability of SOM fractions. All applied chemical treatments induced considerable SOC losses (> 70–95% of mineral-associated SOM) in the investigated soils. The proportion of residual C after chemical fractionation was largest in the arable Ap and E horizons and increased with decreasing C content in the initial SOC after stepwise hydrolysis as well as after the oxidative treatments with H2O2 and Na2S2O8. This can be expected for a functional stable pool of SOM, because it is assumed that the more easily available part of SOC is consumed first if C inputs decrease. All chemical treatments led to a preferential loss of the younger, maize-derived SOC, but this was most pronounced after the treatments with Na2S2O8 and H2O2. After all chemical fractionations, the mean 14C ages of SOC were higher than in the mineral-associated SOM fraction for both study sites and increased in the order: NaOCl < NaOCl+HF ≤ stepwise hydrolysis << H2O2 ≈ Na2S2O8. The results suggest that all treatments were capable of isolating a more stable SOM fraction, but the treatments with H2O2 and Na2S2O8 were the most efficient ones. However, none of the chemical fractionation methods was able to fit the IOM pool calculated using the Rothamsted Carbon Model and isotope data. In the evaluation of thermal oxidation for obtaining stable C fractions, SOC losses increased with temperature from 24–48% (200°C) to 100% (500°C). In the Halle maize Ap horizon, losses of the young, maize-derived C were considerably higher than losses of the older C3-derived C, leading to an increase in the apparent C turnover time from 220 years in mineral-associated SOC to 1158 years after thermal oxidation at 300°C. Most likely, the preferential loss of maize-derived C in the Halle soil was caused by the presence of the high amounts of fossil C mentioned above, which make up a relatively large thermally stable C3-C pool in this soil. This agrees with lower overall SOC losses for the Halle Ap horizon compared to the Rotthalmünster Ap horizon. In the Rotthalmünster soil only slightly more maize-derived than C3-derived SOC was removed by thermal oxidation. Apparent C turnover times increased slightly from 58 years in mineral-associated SOC to 77 years after thermal oxidation at 300°C in the Rotthalmünster Ap and from 151 to 247 years in the Rotthalmünster E horizon. This led to the conclusion that thermal oxidation of SOM was not capable of isolating SOM fractions of considerably higher stability. The incubation experiment showed that macroaggregates develop rapidly after the addition of easily available plant residues. Within the first four weeks of incubation, the maximum aggregation was reached in all treatments without addition of fungicide. The formation of water-stable macroaggregates was related to the size of the microbial biomass pool and its activity. Furthermore, fungi were found to be crucial for the development of soil macroaggregates as the formation of water-stable macroaggregates was significantly delayed in the fungicide treated soils. The C concentration in the obtained aggregate fractions decreased with decreasing aggregate size class, which is in line with the aggregate hierarchy postulated by several authors for soils with SOM as the major binding agent. Macroaggregation involved incorporation of large amounts maize-derived organic matter, but macroaggregates did not play the most important role in the stabilization of maize-derived SOM, because of their relatively low amount (less than 10% of the soil mass). Furthermore, the maize-derived organic matter was quickly incorporated into all aggregate size classes. The microaggregate fraction stored the largest quantities of maize-derived C and N – up to 70% of the residual maize-C and -N were stored in this fraction.