917 resultados para Remote labs
Resumo:
It is of crucial importance the integration of practical sessions in engineering curricula owing to their significant role in understanding engineering concepts and scientific phenomena. However, the lack of practical sessions due to the high costs of the equipment and the unavailability of instructors has caused a significant declination in experimentation in engineering education. Remote laboratories have tackled this issues providing online reusable and shared workbenches unconstrained by neither geographical nor time considerations. Thereby, they have extremely proliferated among universities and integrated into engineering curricula over the last decade. This contribution compiles diverse experiences based on the deployment of the remote laboratory, Virtual Instrument Systems in Reality (VISIR), on the practices of undergraduate engineering grades at various universities within the VISIR community. It aims to show the impact of its usage on engineering education concerning the assessments of students and teachers as well. In addition, the paper address the next challenges and future works carried out at several universities within the VISIR community.
Resumo:
Today, Digital Systems and Services for Technology Supported Learning and Education are recognized as the key drivers to transform the way that individuals, groups and organizations “learn” and the way to “assess learning” in 21st Century. These transformations influence: Objectives - moving from acquiring new “knowledge” to developing new and relevant “competences”; Methods – moving from “classroom” based teaching to “context-aware” personalized learning; and Assessment – moving from “life-long” degrees and certifications to “on-demand” and “in-context” accreditation of qualifications. Within this context, promoting Open Access to Formal and Informal Learning, is currently a key issue in the public discourse and the global dialogue on Education, including Massive Open Online Courses (MOOCs) and Flipped School Classrooms. This volume on Digital Systems for Open Access to Formal and Informal Learning contributes to the international dialogue between researchers, technologists, practitioners and policy makers in Technology Supported Education and Learning. It addresses emerging issues related with both theory and practice, as well as, methods and technologies that can support Open Access to Formal and Informal Learning. In the twenty chapters contributed by international experts who are actively shaping the future of Educational Technology around the world, topics such as: - The evolution of University Open Courses in Transforming Learning - Supporting Open Access to Teaching and Learning of People with Disabilities - Assessing Student Learning in Online Courses - Digital Game-based Learning for School Education - Open Access to Virtual and Remote Labs for STEM Education - Teachers’ and Schools’ ICT Competence Profiling - Web-Based Education and Innovative Leadership in a K-12 International School Setting are presented. An in-depth blueprint of the promise, potential, and imminent future of the field, Digital Systems for Open Access to Formal and Informal Learning is necessary reading for researchers and practitioners, as well as, undergraduate and postgraduate students, in educational technology.
Resumo:
Este artículo analiza diferentes experiencias docentes que tienen como finalidad el aprendizaje de la robótica en el mundo universitario. Estas experiencias se plasman en el desarrollo de varios cursos y asignaturas sobre robótica que se imparten en la Universidad de Alicante. Para el desarrollo de estos cursos, los autores han empleado varias plataformas educativas, algunas de implementación propia, otras de libre distribución y código abierto. El objetivo de estos cursos es enseñar el diseño e implementación de soluciones robóticas a diversos problemas que van desde el control, programación y manipulación de brazos robots de ámbito industrial hasta la construcción y/o programación de mini-robots con carácter educativo. Por un lado, se emplean herramientas didácticas de última generación como simuladores y laboratorios virtuales que flexibilizan el uso de brazos robots y, por otro lado, se hace uso de competiciones y concursos para motivar al alumno haciendo que ponga en práctica las destrezas aprendidas, mediante la construcción y programación de mini-robots de bajo coste.
Resumo:
Learning is not only happening in school or university; it is also an important aspect of the daily life that allows students to remain in their biological and physical environment helping to reshape it, by applying what they have learnt. Today, the higher education sector is a part of important strategies used by countries in order to foster their development. Despite its geographical location, i.e. its closeness to Europe and Asia, the MENA (Middle East and North Africa) region still needs an integrated strategy for the advancement, reform, and update of its higher educational landscape. Although some solutions have been experimented in the region in the field of higher education, they have not been able to raise the quality of education to the level comparable that observed in developed countries. In other words, many MENA higher education systems are facing problems, for which solution ought to be sought. We analyse the situation of higher education systems in the MENA countries and the factors that affect the delay in achieving the level of education existing in other world regions, e.g. Europe, especially in the higher education sector. During the discussion, the impact of new technology-enhanced tools, such as remote laboratories, in the process of development and consolidation of MENA universities, is particularly stressed.
Resumo:
This paper shows that value creation by multinational enterprises (MNEs) is the result of activities where geographic distance effects can be overcome. We submit that geographic distance has a relatively low impact on international research and development (R&D) investments, owing to the spiky nature of innovation, and to the unique ability of MNEs to absorb and transfer knowledge on a global scale. On the one hand, MNEs need to set up their labs as close as possible to specialized technology clusters where valuable knowledge is concentrated, largely regardless of distance from their home base. On the other, MNEs have historically developed technical and organizational competencies that enable them to transfer knowledge within their internal networks and across technology clusters at relatively low cost. Using data on R&D and manufacturing investments of 6320 firms in 59 countries, we find that geographic distance has a lower negative impact on the probability of setting up R&D than manufacturing plants. Furthermore, once measures of institutional proximity are accounted for, MNEs are equally likely to set up R&D labs in nearby or in more remote locations. This result is driven by MNEs based in Triad countries, whereas for non-Triad MNEs the effect of geographic distance on cross-border R&D is negative and significant.
Resumo:
Conferência: 2nd Experiment at International Conference (Exp at)- Univ Coimbra, Coimbra, Portugal - Sep 18-20, 2013
Resumo:
One of the most common problems of rotating machinery is the rotor unbalance. The effects of rotor unbalance can vary from the malfunction of certain equipment to diseases related to the exposure to high vibration levels. However, the balancing procedure is known, it is mandatory to have qualified technicians to perform it. In this sense, the use of virtual balancing experiments is of great interest. The present demo is dedicated to present two different balancing simulators, which can be explored in conjunction, as they have complementary outputs. © 2014 IEEE.
Resumo:
The great majority of the courses on science and technology areas where lab work is a fundamental part of the apprenticeship was not until recently available to be taught at distance. This reality is changing with the dissemination of remote laboratories. Supported by resources based on new information and communication technologies, it is now possible to remotely control a wide variety of real laboratories. However, most of them are designed specifically to this purpose, are inflexible and only on its functionality they resemble the real ones. In this paper, an alternative remote lab infrastructure devoted to the study of electronics is presented. Its main characteristics are, from a teacher's perspective, reusability and simplicity of use, and from a students' point of view, an exact replication of the real lab, enabling them to complement or finish at home the work started at class. The remote laboratory is integrated in the Learning Management System in use at the school, and therefore, may be combined with other web experiments and e-learning strategies, while safeguarding security access issues.
Resumo:
Control systems theory can be a discipline difficult to learn without some laboratory help. With the help of focused laboratories this discipline turns to be very interesting to the students involved. The main problem is that laboratories aren't always available to students, and sometimes, when they are available, aren't big enough to a growing student population. Thus, with computer networks growing so fast, why don't create remote control labs that can be used by a large number of students? Why don't create remote control labs using Internetⓒ Copyright ?2001 IFAC Keywords: Remote Control, Computer Networks, Database, Educational Aids, Laboratory Education, Communication Control Applications.
Resumo:
This paper examines the role of parent rock, pedogenetic processes and airborne pollution in heavy metal accumulation in soils from a remote oceanic island, Fernando de Noronha, Brazil. We studied five soil profiles developed from different volcanic rocks. Mineralogical composition and total concentrations of major and trace elements were determined in 43 samples. The obtained concentrations range for heavy metals were: Co: 26-261 ppm; Cu: 35-97 ppm; Cr: 350-1446 ppm; Ni: 114-691 ppm; Zn: 101-374 ppm; Hg: 2-150 ppb. The composition of soils is strongly affected by the geochemical character of the parent rock. Pedogenesis appears to be responsible for the accumulation of Zn, Co, and, to a lesser extent, of Ni and Cu, in the upper, Mn- and organic carbon-enriched horizons of the soil profiles. Pedogenic influence may also explain the relationship observed between Cr and the Fe. Hg is likely to have been added to the soil profile by long-range atmospheric transport. Its accumulation in the topsoil was further favoured by the formation of stable complexes with organic matter. Clay minerals do not appear to play an important role in the fixation of heavy metals.
Resumo:
Hemorrhage in regions remote from the site of initial intracranial operations is rare, but may be fatal. Postoperative cerebellar hemorrhage as a complication of supratentorial surgery, with a radiological appearance known as zebra sign, is an increasingly recognized clinical entity and is associated mainly with vascular neurosurgery or temporal lobe resection. The pathophysiology remains unclear. Three cases of remote cerebellar hematoma occurred after neck clipping of anterior communicating artery aneurysms. All patients had similar clinical findings and underwent pterional craniotomy with the head in accentuated extension. One patient died and the two were discharged without symptoms. Cerebellar hemorrhage probably has a multifactorial origin involving positioning associated with abundant cerebrospinal fluid drainage causing cerebellar sag with resultant vein stretching and bleeding, and use of aspirin or other antiplatelet agents.
Resumo:
Background: In areas with limited structure in place for microscopy diagnosis, rapid diagnostic tests (RDT) have been demonstrated to be effective. Method: The cost-effectiveness of the Optimal (R) and thick smear microscopy was estimated and compared. Data were collected on remote areas of 12 municipalities in the Brazilian Amazon. Data sources included the National Malaria Control Programme of the Ministry of Health, the National Healthcare System reimbursement table, hospitalization records, primary data collected from the municipalities, and scientific literature. The perspective was that of the Brazilian public health system, the analytical horizon was from the start of fever until the diagnostic results provided to patient and the temporal reference was that of year 2006. The results were expressed in costs per adequately diagnosed cases in 2006 U. S. dollars. Sensitivity analysis was performed considering key model parameters. Results: In the case base scenario, considering 92% and 95% sensitivity for thick smear microscopy to Plasmodium falciparum and Plasmodium vivax, respectively, and 100% specificity for both species, thick smear microscopy is more costly and more effective, with an incremental cost estimated at US$ 549.9 per adequately diagnosed case. In sensitivity analysis, when sensitivity and specificity of microscopy for P. vivax were 0.90 and 0.98, respectively, and when its sensitivity for P. falciparum was 0.83, the RDT was more cost-effective than microscopy. Conclusion: Microscopy is more cost-effective than OptiMal (R) in these remote areas if high accuracy of microscopy is maintained in the field. Decision regarding use of rapid tests for diagnosis of malaria in these areas depends on current microscopy accuracy in the field.
Resumo:
Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of multi-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens.
Resumo:
During the last few years, the evolution of fieldbus and computers networks allowed the integration of different communication systems involving both production single cells and production cells, as well as other systems for business intelligence, supervision and control. Several well-adopted communication technologies exist today for public and non-public networks. Since most of the industrial applications are time-critical, the requirements of communication systems for remote control differ from common applications for computer networks accessing the Internet, such as Web, e-mail and file transfer. The solution proposed and outlined in this work is called CyberOPC. It includes the study and the implementation of a new open communication system for remote control of industrial CNC machines, making the transmission delay for time-critical control data shorter than other OPC-based solutions, and fulfilling cyber security requirements.