823 resultados para Reliability, Lorenz Curve
Resumo:
For non-negative random variables with finite means we introduce an analogous of the equilibrium residual-lifetime distribution based on the quantile function. This allows us to construct new distributions with support (0, 1), and to obtain a new quantile-based version of the probabilistic generalization of Taylor's theorem. Similarly, for pairs of stochastically ordered random variables we come to a new quantile-based form of the probabilistic mean value theorem. The latter involves a distribution that generalizes the Lorenz curve. We investigate the special case of proportional quantile functions and apply the given results to various models based on classes of distributions and measures of risk theory. Motivated by some stochastic comparisons, we also introduce the “expected reversed proportional shortfall order”, and a new characterization of random lifetimes involving the reversed hazard rate function.
Resumo:
The modern society has come to expect the electrical energy on demand, while many of the facilities in power systems are aging beyond repair and maintenance. The risk of failure is increasing with the aging equipments and can pose serious consequences for continuity of electricity supply. As the equipments used in high voltage power networks are very expensive, economically it may not be feasible to purchase and store spares in a warehouse for extended periods of time. On the other hand, there is normally a significant time before receiving equipment once it is ordered. This situation has created a considerable interest in the evaluation and application of probability methods for aging plant and provisions of spares in bulk supply networks, and can be of particular importance for substations. Quantitative adequacy assessment of substation and sub-transmission power systems is generally done using a contingency enumeration approach which includes the evaluation of contingencies, classification of the contingencies based on selected failure criteria. The problem is very complex because of the need to include detailed modelling and operation of substation and sub-transmission equipment using network flow evaluation and to consider multiple levels of component failures. In this thesis a new model associated with aging equipment is developed to combine the standard tools of random failures, as well as specific model for aging failures. This technique is applied in this thesis to include and examine the impact of aging equipments on system reliability of bulk supply loads and consumers in distribution network for defined range of planning years. The power system risk indices depend on many factors such as the actual physical network configuration and operation, aging conditions of the equipment, and the relevant constraints. The impact and importance of equipment reliability on power system risk indices in a network with aging facilities contains valuable information for utilities to better understand network performance and the weak links in the system. In this thesis, algorithms are developed to measure the contribution of individual equipment to the power system risk indices, as part of the novel risk analysis tool. A new cost worth approach was developed in this thesis that can make an early decision in planning for replacement activities concerning non-repairable aging components, in order to maintain a system reliability performance which economically is acceptable. The concepts, techniques and procedures developed in this thesis are illustrated numerically using published test systems. It is believed that the methods and approaches presented, substantially improve the accuracy of risk predictions by explicit consideration of the effect of equipment entering a period of increased risk of a non-repairable failure.
Resumo:
The ability to forecast machinery health is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models which attempt to forecast machinery health based on condition data such as vibration measurements. This paper demonstrates how the population characteristics and condition monitoring data (both complete and suspended) of historical items can be integrated for training an intelligent agent to predict asset health multiple steps ahead. The model consists of a feed-forward neural network whose training targets are asset survival probabilities estimated using a variation of the Kaplan–Meier estimator and a degradation-based failure probability density function estimator. The trained network is capable of estimating the future survival probabilities when a series of asset condition readings are inputted. The output survival probabilities collectively form an estimated survival curve. Pump data from a pulp and paper mill were used for model validation and comparison. The results indicate that the proposed model can predict more accurately as well as further ahead than similar models which neglect population characteristics and suspended data. This work presents a compelling concept for longer-range fault prognosis utilising available information more fully and accurately.
Resumo:
Background: Nutrition screening is usually administered by nurses. However, most studies on nutrition screening tools have not used nurses to validate the tools. The 3-Minute Nutrition Screening (3-MinNS) assesses weight loss, dietary intake and muscle wastage, with the composite score of each used to determine risk of malnutrition. The aim of the study was to determine the validity and reliability of 3-MinNS administered by nurses, who are the intended assessors. Methods: In this cross sectional study, three ward-based nurses screened 121 patients aged 21 years and over using 3-MinNS in three wards within 24 hours of admission. A dietitian then assessed the patients’ nutritional status using Subjective Global Assessment within 48 hours of admission, whilst blinded to the results of the screening. To assess the reliability of 3-MinNS, 37 patients screened by the first nurse were re-screened by a second nurse within 24 hours, who was blinded to the results of the first nurse. The sensitivity, specificity and best cutoff score for 3-MinNS were determined using the Receiver Operator Characteristics Curve. Results: The best cutoff score to identify all patients at risk of malnutrition using 3-MinNS was three, with sensitivity of 89% and specificity of 88%. This cutoff point also identified all (100%) severely malnourished patients. There was strong correlation between 3-MinNS and SGA (r=0.78, p<0.001). The agreement between two nurses conducting the 3-MinNS tool was 78.3%. Conclusion: 3-Minute Nutrition Screening is a valid and reliable tool for nurses to identify patients at risk of malnutrition.
Resumo:
Background Nutrition screening is usually administered by nurses. However, most studies on nutrition screening tools have not used nurses to validate the tools. The 3-Minute Nutrition Screening (3-MinNS) assesses weight loss, dietary intake and muscle wastage, with the composite score of each used to determine risk of malnutrition. The aim of the study was to determine the validity and reliability of 3-MinNS administered by nurses, who are the intended assessors. Methods In this cross sectional study, three ward-based nurses screened 121 patients aged 21 years and over using 3-MinNS in three wards within 24 hours of admission. A dietitian then assessed the patients’ nutritional status using Subjective Global Assessment within 48 hours of admission, whilst blinded to the results of the screening. To assess the reliability of 3-MinNS, 37 patients screened by the first nurse were re-screened by a second nurse within 24 hours, who was blinded to the results of the first nurse. The sensitivity, specificity and best cutoff score for 3-MinNS were determined using the Receiver Operator Characteristics Curve. Results The best cutoff score to identify all patients at risk of malnutrition using 3-MinNS was three, with sensitivity of 89% and specificity of 88%. This cutoff point also identified all (100%) severely malnourished patients. There was strong correlation between 3-MinNS and SGA (r=0.78, p<0.001). The agreement between two nurses conducting the 3-MinNS tool was 78.3%. Conclusion 3-Minute Nutrition Screening is a valid and reliable tool for nurses to identify patients at risk of malnutrition.
Resumo:
OBJECTIVE: Strict lifelong compliance to a gluten-free diet (GFD) minimizes the long-term risk of mortality, especially from lymphoma, in adult celiac disease (CD). Although serum IgA antitransglutaminase (IgA-tTG-ab), like antiendomysium (IgA-EMA) antibodies, are sensitive and specific screening tests for untreated CD, their reliability as predictors of strict compliance to and dietary transgressions from a GFD is not precisely known. We aimed to address this question in consecutively treated adult celiacs. METHODS: In a cross-sectional study, 95 non-IgA deficient adult (median age: 41 yr) celiacs on a GFD for at least 1 yr (median: 6 yr) were subjected to 1) a dietician-administered inquiry to pinpoint and quantify the number and levels of transgressions (classified as moderate or large, using as a cutoff value the median gluten amount ingested in the overall noncompliant patients of the series) over the previous 2 months, 2) a search for IgA-tTG-ab and -EMA, and 3) perendoscopic duodenal biopsies. The ability of both antibodies to discriminate celiacs with and without detected transgressions was described using receiver operating characteristic curves and quantified as to sensitivity and specificity, according to the level of transgressions. RESULTS: Forty (42%) patients strictly adhered to a GFD, 55 (58%) had committed transgressions, classified as moderate (< or = 18 g of gluten/2 months; median number 6) in 27 and large (>18 g; median number 69) in 28. IgA-tTG-ab and -EMA specificity (proportion of correct recognition of strictly compliant celiacs) was 0.97 and 0.98, respectively, and sensitivity (proportion of correct recognition of overall, moderate, and large levels of transgressions) was 0.52, 0.31, and 0.77, and 0.62, 0.37, and 0.86, respectively. IgA-tTG-ab and -EMA titers were correlated (p < 0.001) to transgression levels (r = 0.560 and R = 0.631, respectively) and one to another (p < 0.001) in the whole patient population (r = 0.834, N = 84) as in the noncompliant (r = 0.915, N = 48) group. Specificity and sensitivity of IgA-tTG-ab and IgA-EMA for recognition of total villous atrophy in patients under a GFD were 0.90 and 0.91, and 0.60 and 0.73, respectively. CONCLUSIONS: In adult CD patients on a GFD, IgA-tTG-ab are poor predictors of dietary transgressions. Their negativity is a falsely secure marker of strict diet compliance.
Resumo:
The debate about the complex issues of human development during the Middle to Upper Palaeolithic transition period (45-35 ka BP) has been hampered by concerns about the reliability of the radiocarbon dating method. Large C-14 anomalies were postulated and radiocarbon dating was considered flawed. We show here that these issues are no longer relevant, because the large anomalies are artefacts beyond plausible physical limits for their magnitude. Previous inconsistencies between C-14 radiocarbon datasets have been resolved, and a new radiocarbon calibration curve, IntCal09 (Reimer et al., 2009), was created. Improved procedures for bone collagen extraction and charcoal pre-treatment generally result in older ages, consistent with independently dated time markers. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Objectlve:--This study examined the intraclass reliability· of different measures of the
excitability of the Hoffmann reflex, derived from stimulus-response curves. The slope of the
regression line of the H-reflex stimulus-response curve advocated by Funase et al. (1994) was
also compared to the peak of the first derivative of the H-reflex stimulus-response curve
(dHIdVmax), a new measure introduced in this investigation. A secondary purpose was to explore
the possibility of mood as a covariate when measuring excitability of the H-reflex arc.
Methods: The H-reflex amplitude at a stimulus intensity corresponding to 5% of the
maximum M-wave (Mmax) is an established measure that was used as an additional basis of
comparison. The H-reflex was elicited in the soleus for 24 subjects (12 males and 12 females)
on five separate days. Vibration was applied to the Achilles tendon prior to stimulation to test
the sensitivity of the measures on test day four. The means of five evoked potentials at each
gradually increasing intensity, from below H-reflex threshold to above Mmax, were used to create
both the H-reflex and M-wave stimulus response curves for each subject across test days. The
mood of the subjects was assessed using the Subjective Exercise Experience Scale (SEES) prior
to the stimulation protocol each day.
Results: There was a modest decrease in all H-reflex measures from the first to third test day,
but it was non-significant (P's>0.05). All measures of the H-reflex exhibited a profound
reduction following vibration on test day four, and then returned to baseline levels on test day
five (P's<0.05). The intraclass correlation coefficient (ICC) for H-reflex amplitude at 5% of
Mmax was 0.85. The ICC for the slope of the regression line was 0.79 while it was 0.89 for
dH/dVmax. Maximum M-wave amplitude had an ICC of 0.96 attesting to careful methodological
controls. The SEES subscales of fatigue and psychological well-being remained unchanged
IV
across the five days. The psychological distress subscale (P
Resumo:
In this paper, a simple relation between the Leimkuhler curve and the mean residual life is established. The result is illustrated with several models commonly used in informetrics, such as exponential, Pareto and lognormal. Finally, relationships with some other reliability concepts are also presented. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Excessive rearfoot eversion is thought to be a risk factor for patellofemoral pain development, due to the kinesiological relationship with ascendant adaptations. Individuals with patellofemoral pain are often diagnosed through static clinical tests, in scientific studies and clinical practice. However, the adaptations seem to appear in dynamic conditions. Performing static vs. dynamic evaluations of widely used measures would add to the knowledge in this area. Thus, the aim of this study was to determine the reliability and differentiation capability of three rearfoot eversion measures: rearfoot range of motion, static clinical test and static measurement using a three-dimensional system. A total of 29 individuals with patellofemoral pain and 25 control individuals (18-30 years) participated in this study. Each subject underwent three-dimensional motion analysis during stair climbing and static clinical tests. Intraclass correlation coefficient and standard error measurements were performed to verify the reliability of the variables and receiver operating characteristic curves to show the diagnostic accuracy of each variable. In addition, analyses of variance were performed to identify differences between groups. Rearfoot range of motion demonstrated higher diagnostic accuracy (an area under the curve score of 0.72) than static measures and was able to differentiate the groups. Only the static clinical test presented poor and moderate reliability. Other variables presented high to very high values. Rearfoot range of motion was the variable that presented the best results in terms of reliability and differentiation capability. Static variables do not seem to be related to patellofemoral pain and have low accuracy values.
Resumo:
Chaabene, H, Hachana, Y, Franchini, E, Mkaouer, B, Montassar, M, and Chamari, K. Reliability and construct validity of the karate-specific aerobic test. J Strength Cond Res 26(12): 3454-3460, 2012-The aim of this study was to examine absolute and relative reliabilities and external responsiveness of the Karate-specific aerobic test (KSAT). This study comprised 43 male karatekas, 19 of them participated in the first study to establish test-retest reliability and 40, selected on the bases of their karate experience and level of practice, participated in the second study to identify external responsiveness of the KSAT. The latter group was divided into 2 categories: national-level group (G(n)) and regional-level group (Gr). Analysis showed excellent test-retest reliability of time to exhaustion (TE), with intraclass correlation coefficient ICC(3,1) >0.90, standard error of measurement (SEM) <5%: (3.2%) and mean difference (bias) +/- the 95% limits of agreement: -9.5 +/- 78.8 seconds. There was a significant difference between test-retest session in peak lactate concentration (Peak [La]) (9.12 +/- 2.59 vs. 8.05 +/- 2.67 mmol.L-1; p < 0.05) but not in peak heart rate (HRpeak) and rating of perceived exertion (RPE) (196 +/- 9 vs. 194 +/- 9 b.min(-1) and 7.6 +/- 0.93 vs. 7.8 +/- 1.15; p > 0.05), respectively. National-level karate athletes (1,032 +/- 101 seconds) were better than regional level (841 +/- 134 seconds) on TE performance during KSAT (p < 0.001). Thus, KSAT provided good external responsiveness. The area under the receiver operator characteristics curve was >0.70 (0.86; confidence interval 95%: 0.72-0.95). Significant difference was detected in Peak [La] between national- (6.09 +/- 1.78 mmol.L-1) and regional-level (8.48 +/- 2.63 mmol.L-1) groups, but not in HRpeak (194 +/- 8 vs. 195 +/- 8 b.min(-1)) and RPE (7.57 +/- 1.15 vs. 7.42 +/- 1.1), respectively. The result of this study indicates that KSAT provides excellent absolute and relative reliabilities. The KSAT can effectively distinguish karate athletes of different competitive levels. Thus, the KSAT may be suitable for field assessment of aerobic fitness of karate practitioners.
Resumo:
Objectives: Because the mechanical behavior of the implant-abutment system is critical for the longevity of implant-supported reconstructions, this study evaluated the fatigue reliability of different implant-abutment systems used as single-unit crowns and their failure modes. Methods and Materials: Sixty-three Ti-6Al-4V implants were divided in 3 groups: Replace Select (RS); IC-IMP Osseotite; and Unitite were restored with their respective abutments. Anatomically correct central incisor metal crowns were cemented and subjected to separate single load to failure tests and step-stress accelerated life testing (n = 18). A master Weibull curve and reliability for a mission of 50,000 cycles at 200 N were calculated. Polarized-light and scanning electron microscopes were used for failure analyses. Results: The load at failure mean values during step-stress accelerated life testing were 348.14 N for RS, 324.07 N for Osseotite, and 321.29 N for the Unitite systems. No differences in reliability levels were detected between systems, and only the RS system mechanical failures were shown to be accelerated by damage accumulation. Failure modes differed between systems. Conclusions: The 3 evaluated systems did not present significantly different reliability; however, failure modes were different. (Implant Dent 2012;21:67-71)
Resumo:
A regional envelope curve (REC) of flood flows summarises the current bound on our experience of extreme floods in a region. RECs are available for most regions of the world. Recent scientific papers introduced a probabilistic interpretation of these curves and formulated an empirical estimator of the recurrence interval T associated with a REC, which, in principle, enables us to use RECs for design purposes in ungauged basins. The main aim of this work is twofold. First, it extends the REC concept to extreme rainstorm events by introducing the Depth-Duration Envelope Curves (DDEC), which are defined as the regional upper bound on all the record rainfall depths at present for various rainfall duration. Second, it adapts the probabilistic interpretation proposed for RECs to DDECs and it assesses the suitability of these curves for estimating the T-year rainfall event associated with a given duration and large T values. Probabilistic DDECs are complementary to regional frequency analysis of rainstorms and their utilization in combination with a suitable rainfall-runoff model can provide useful indications on the magnitude of extreme floods for gauged and ungauged basins. The study focuses on two different national datasets, the peak over threshold (POT) series of rainfall depths with duration 30 min., 1, 3, 9 and 24 hrs. obtained for 700 Austrian raingauges and the Annual Maximum Series (AMS) of rainfall depths with duration spanning from 5 min. to 24 hrs. collected at 220 raingauges located in northern-central Italy. The estimation of the recurrence interval of DDEC requires the quantification of the equivalent number of independent data which, in turn, is a function of the cross-correlation among sequences. While the quantification and modelling of intersite dependence is a straightforward task for AMS series, it may be cumbersome for POT series. This paper proposes a possible approach to address this problem.