936 resultados para Rehabilitation of buildings


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone-anchored prostheses, relying on implants to attach the prosthesis directly to the residual skeleton, are the ultimate resort for patients with transfemoral amputations (TFA) experiencing severe socket discomfort. The first patient receiving a bone-anchored prosthesis underwent the surgery in 1990 in the Sahlgrenska University Hospital (Sweden). To date, there are two commercially available implants: OPRA (Integrum, Sweden) and ILP (Orthodynamics, Germany). The key to success to this technique is a firm bone-implant bonding, depending on increasing mechanical stress applied daily during load bearing exercises (LBE). The loading data could be analysed through different biomechanical variables. The intra-tester reliability of these exercises will be presented here. Moreover the effect of increase of loading, axes of application of the load and body weight as well as the difference between force and moment variables will be discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osseointegration has been introduced in the orthopaedic surgery in the 1990’s in Gothenburg (Sweden). To date, there are two frequently used commercially available human implants: the OPRA (Integrum, Sweden) and ILP (Orthodynamics, Germany) systems. The rehabilitation program with both systems include some form of static load bearing exercises. These latter involved following a load progression that is monitored by the bathroom scale, providing only the load applied on the vertical axis. The loading data could be analysed through different biomechanical variables. For instance, the load compliance, corresponding to the difference between the load recommended (LR) and the load actually applied on the implant, will be presented here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The desire to solve problems caused by socket prostheses in transfemoral amputees and the acquired success of osseointegration in the dental application has led to the introduction of osseointegration in the orthopedic surgery. Since its first introduction in 1990 in Gothenburg Sweden the osseointegrated (OI) orthopedic fixation has proven several benefits[1]. The surgery consists of two surgical procedures followed by a lengthy rehabilitation program. The rehabilitation program after an OI implant includes a specific training period with a short training prosthesis. Since mechanical loading is considered to be one of the key factors that influence bone mass and the osseointegration of bone-anchored implants, the rehabilitation program will also need to include some form of load bearing exercises (LBE). To date there are two frequently used commercially available human implants. We can find proof in the literature that load bearing exercises are performed by patients with both types of OI implants. We refer to two articles, a first one written by Dr. Aschoff and all and published in 2010 in the Journal of Bone and Joint Surgery.[2] The second one presented by Hagberg et al in 2009 gives a very thorough description of the rehabilitation program of TFA fitted with an OPRA implant. The progression of the load however is determined individually according to the residual skeleton’s quality, pain level and body weight of the participant.[1] Patients are using a classical bathroom weighing scale to control the load on the implant during the course of their rehabilitation. The bathroom scale is an affordable and easy-to-use device but it has some important shortcomings. The scale provides instantaneous feedback to the patient only on the magnitude of the vertical component of the applied force. The forces and moments applied along and around the three axes of the implant are unknown. Although there are different ways to assess the load on the implant for instance through inverse dynamics in a motion analysis laboratory [3-6] this assessment is challenging. A recent proof- of-concept study by Frossard et al (2009) showed that the shortcomings of the weighing scale can be overcome by a portable kinetic system based on a commercial transducer[7].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes research conducted for the Japanese government in the wake of the magnitude 9.0 earthquake and tsunami that struck eastern Japan on March 11, 2011. In this study, material stock analysis (MSA) is used to examine the losses of building and infrastructure materials after this disaster. Estimates of the magnitude of material stock that has lost its social function as a result of a disaster can indicate the quantities required for reconstruction, help garner a better understanding of the volumes of waste flows generated by that disaster, and also help in the course of policy deliberations in the recovery of disaster-stricken areas. Calculations of the lost building and road materials in the five prefectures most affected were undertaken. Analysis in this study is based on the use of geographical information systems (GIS) databases and statistics; it aims to (1) describe in spatial terms what construction materials were lost, (2) estimate the amount of infrastructure material needed to rehabilitate disaster areas, and (3) indicate the amount of lost material stock that should be taken into consideration during government policy deliberations. Our analysis concludes that the material stock losses of buildings and road infrastructure are 31.8 and 2.1 million tonnes, respectively. This research approach and the use of spatial MSA can be useful for urban planners and may also convey more appropriate information about disposal based on the work of municipalities in disaster-afflicted areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Individuals with limb amputation fitted with conventional socket-suspended prostheses often experience socket-related discomfort leading to a significant decrease in quality of life. Bone-anchored prostheses are increasingly acknowledged as viable alternative method of attachment of artificial limb. In this case, the prosthesis is attached directly to the residual skeleton through a percutaneous fixation. To date, a few osseointegration fixations are commercially available. Several devices are at different stages of development particularly in Europe and the US.[1-15] Clearly, surgical procedures are currently blooming worldwide. Indeed, Australia and Queensland in particular have one of the fastest growing populations. Previous studies involving either screw-type implants or press-fit fixations for bone-anchorage have focused on fragmented biomechanics aspects as well as the clinical benefits and safety of the procedure. However, very few publications have synthetized this information and provided an overview of the current developments in bone-anchored prostheses worldwide, let alone in Australia. The purposes of the presentation will be: 1. To provide an overview of the state-of-art developments in bone-anchored prostheses with as strong emphasis on the design of fixations, treatment, benefits, risks as well as future opportunities and challenges, 2. To present the current international developments of procedures for bone-anchored prostheses in terms of numbers of centers, number of cases and typical case-mix, 3. To highlight the current role Australia is playing as a leader worldwide in terms of growing population, broadest range of case-mix, choices of fixations, development of reimbursement schemes, unique clinical outcome registry for evidence-based practice, cutting-edge research, consumer demand and general public interest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an initiative taken in Pakistan for the rehabilitation of the deaf community, enabled by the use of technology. iPSL is a system that primarily aims at facilitating communication between the hearing and the deaf community in Pakistan. There is a twofold approach to achieve this. The first dimension is to implement a system that can translate signs made by deaf into natural language sentences. The second dimension is to implement tools that enable hearing people to understand and learn sign language by converting natural language sentences into sign language. This paper presents the progress made in the project so far in terms of design, implementation and evaluation. © ACM 2009.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, we develop an efficient collapse prediction model, the PFA (Peak Filtered Acceleration) model, for buildings subjected to different types of ground motions.

For the structural system, the PFA model covers modern steel and reinforced concrete moment-resisting frame buildings (potentially reinforced concrete shear wall buildings). For ground motions, the PFA model covers ramp-pulse-like ground motions, long-period ground motions, and short-period ground motions.

To predict whether a building will collapse in response to a given ground motion, we first extract long-period components from the ground motion using a Butterworth low-pass filter with suggested order and cutoff frequency. The order depends on the type of ground motion, and the cutoff frequency depends on the building’s natural frequency and ductility. We then compare the filtered acceleration time history with the capacity of the building. The capacity of the building is a constant for 2-dimentional buildings and a limit domain for 3-dimentional buildings. If the filtered acceleration exceeds the building’s capacity, the building is predicted to collapse. Otherwise, it is expected to survive the ground motion.

The parameters used in PFA model, which include fundamental period, global ductility and lateral capacity, can be obtained either from numerical analysis or interpolation based on the reference building system proposed in this thesis.

The PFA collapse prediction model greatly reduces computational complexity while archiving good accuracy. It is verified by FEM simulations of 13 frame building models and 150 ground motion records.

Based on the developed collapse prediction model, we propose to use PFA (Peak Filtered Acceleration) as a new ground motion intensity measure for collapse prediction. We compare PFA with traditional intensity measures PGA, PGV, PGD, and Sa in collapse prediction and find that PFA has the best performance among all the intensity measures.

We also provide a close form in term of a vector intensity measure (PGV, PGD) of the PFA collapse prediction model for practical collapse risk assessment.