960 resultados para Regeneration -- immunology
Resumo:
The immune response to infection by dermatophytes ranges from a non-specific host mechanism to a humoral and cell-mediated immune response. The currently accepted view is that a cell-mediated immune response is responsible for the control of dermatophytosis. Indeed, some individuals develop a chronic or recurrent infection mediated by the suppression of a cell-mediated immune response. The immune response to Trichophyton is unusual in that this fungus can elicit both immediate hypersensitivity (IH) and delayed-type hypersensitivity (DTH) in different individuals when they are submitted to a skin test reaction. Understanding the nature and function of the immune response to dermatophytes is an exciting challenge that might lead to novel approaches in the treatment and immunological prophylaxis of dermatophytosis.
Resumo:
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) leading to demyelination, axonal damage, and progressive neurologic disability. The development of MS is influenced by environmental factors, particularly the Epstein-Barr virus (EBV), and genetic factors, which include specific HLA types, particularly DRB1*1501-DQA1*0102-DQB1*0602, and a predisposition to autoimmunity in general. MS patients have increased circulating T-cell and antibody reactivity to myelin proteins and gangliosides. It is proposed that the role of EBV is to infect autoreactive B cells that then seed the CNS and promote the survival of autoreactive T cells there. It is also proposed that the clinical attacks of relapsing-remitting MS are orchestrated by myelin-reactive T cells entering the white matter of the CNS from the blood, and that the progressive disability in primary and secondary progressive MS is caused by the action of autoantibodies produced in the CNS by meningeal lymphoid follicles with germinal centers.
Resumo:
Background/Aims: Liver clearance models are based on information (or assumptions) on solute distribution kinetics within the microvasculatory system, The aim was to study albumin distribution kinetics in regenerated livers and in livers of normal adult rats, Methods: A novel mathematical model was used to evaluate the distribution space and the transit time dispersion of albumin in livers following regeneration after a two-thirds hepatectomy compared to livers of normal adult rats. Outflow curves of albumin measured after bolus injection in single-pass perfused rat livers were analyzed by correcting for the influence of catheters and fitting a long-tailed function to the data. Results: The curves were well described by the proposed model. The distribution volume and the transit time dispersion of albumin observed in the partial hepatectomy group were not significantly different from livers of normal adult rats. Conclusions: These findings suggest that the distribution space and the transit time dispersion of albumin (CV2) is relatively constant irrespective of the presence of rapid and extensive repair. This invariance of CV2 implies, as a first approximation, a similar degree of intrasinusoidal mixing, The finding that a sum of two (instead of one) inverse Gaussian densities is an appropriate empirical function to describe the outflow curve of vascular indicators has consequences for an improved prediction of hepatic solute extraction.
Resumo:
Peanut, one of the world's most important oilseed crops, has a narrow germplasm base and lacks sources of resistance to several major diseases. The species is considered recalcitrant to transformation, with few confirmed transgenic plants upon particle bombardment or Agrobacterium treatment. Reported transformation methods are limited by low efficiency, cultivar specificity, chimeric or infertile transformants, or availability of explants. Here we present a method to efficiently transform cultivars in both botanical types of peanut, by (1) particle bombardment into embryogenic callus derived from mature seeds, (2) escape-free (not stepwise) selection for hygromycin B resistance, (3) brief osmotic desiccation followed by sequential incubation on charcoal and cytokinin-containing media; resulting in efficient conversion of transformed somatic embryos into fertile, non-chimeric, transgenic plants. The method produces three to six independent transformants per bombardment of 10 cm(2) embryogenic callus. Potted, transgenic plant lines can be regenerated within 9 months of callus initiation, or 6 months after bombardment. Transgene copy number ranged from one to 20 with multiple integration sites. There was ca. 50% coexpression of hph and luc or uidA genes coprecipitated on separate plasmids. Reporter gene (luc) expression was confirmed in T-1 progeny from each of six tested independent transformants. Insufficient seeds were produced under containment conditions to determine segregation ratios. The practicality of the technique for efficient cotransformation with selected and unselected genes is demonstrated using major commercial peanut varieties in Australia (cv. NC-7, a virginia market type) and Indonesia (cv. Gajah, a spanish market type).
Resumo:
Over recent years databases have become an extremely important resource for biomedical research. Immunology research is increasingly dependent on access to extensive biological databases to extract existing information, plan experiments, and analyse experimental results. This review describes 15 immunological databases that have appeared over the last 30 years. In addition, important issues regarding database design and the potential for misuse of information contained within these databases are discussed. Access pointers are provided for the major immunological databases and also for a number of other immunological resources accessible over the World Wide Web (WWW). (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The explosive growth in biotechnology combined with major advancesin information technology has the potential to radically transformimmunology in the postgenomics era. Not only do we now have readyaccess to vast quantities of existing data, but new data with relevanceto immunology are being accumulated at an exponential rate. Resourcesfor computational immunology include biological databases and methodsfor data extraction, comparison, analysis and interpretation. Publiclyaccessible biological databases of relevance to immunologists numberin the hundreds and are growing daily. The ability to efficientlyextract and analyse information from these databases is vital forefficient immunology research. Most importantly, a new generationof computational immunology tools enables modelling of peptide transportby the transporter associated with antigen processing (TAP), modellingof antibody binding sites, identification of allergenic motifs andmodelling of T-cell receptor serial triggering.
Resumo:
Hepatocyte proliferation and apoptosis (programmed cell death) occur during the liver parenchyma regeneration and the liver size modeling is mainly controlled by hepatocyte apoptosis. The purpose of the present study was to verify the influence of immunosuppressant drugs on these phenomena by utilizing tissue microarray techniques. Thirty-six weaning rats (age 21-23 days, weight 30-50 g) were divided into six groups: control, sham, hepatectomy, hepatectomy plus solumedrol, hepatectomy plus CsA, and hepatectomy plus Tac. The animals were killed one day after hepatectomy, and the remnant livers were weighed and harvested for tissue microarray sections. Liver cell proliferation was evaluated by staining for PCNA and apoptosis was detected by the TUNEL method. It was verified that CsA promoted a decrease in the liver weight, Tac and CsA decreased the proliferation index of hepatocytes, and glucocorticoid had no significant effects. The apoptosis index was not altered by hepatectomy or immunosuppressants. Our data indicate that, in the growing rat, CsA and Tac have negative effects on hepatocyte proliferation and have no effect on the hepatocyte apoptosis.
Resumo:
The regeneration and remodeling of the transplanted liver is the result of hepatocyte proliferation and apoptosis (programmed cell death). The purpose of this study was to verify the influence of immunosuppressants on the expression levels of genes: IL-6 (regulator of hepatocyte proliferation), pro-apoptotic (Bak and Bax) and anti-apoptotic (Bcl-Xl and Bcl-2). 36 newborn suckling rats (age 5-7 days, weight 6-10 g) were divided into four groups: hepatectomy, hepatectomy plus methylprednisolone, hepatectomy plus CsA and hepatectomy plus Tac. The same experiments were performed in 24 weaning rats (age 21-23 days, weight 30-50 g). The animals were killed one day after the hepatectomy and the remnant livers were analyzed. The livers of all animals exhibited histological changes of liver regeneration. The immunosuppressants did not promote any alteration on IL-6 gene expression levels. Methylprednisolone and CsA increased the expression levels of Bak gene in newborn rats. However, methylprednisolone and Tac promoted increased expression levels of Bcl-2 in all groups. We hypothesize that these effects explain the efficacy of these drugs on the treatment of acute and chronic liver rejection as the expression of Bcl-2 in cholangiocytes is decreased as a consequence of bile duct lesions.
Resumo:
BACKGROUND: Restoration of nerve continuity and effective maintenance of coaptation are considered fundamental principles of end-to-end peripheral nerve repair. OBJECTIVE: To evaluate the influence of the number of stitches on axonal regeneration and collagen production after neurorrhaphy. METHODS: Thirty male Wistar rats were equally divided into 3 groups and were all operated on with the right sciatic nerve exposed. In 2 groups, the nerve was sectioned and repaired by means of 3 (group B) or 6 (group C) epineurium sutures with 100 monofilament nylon. One group (group A) was used as a control. Each animal from groups B and C underwent electrophysiological evaluation with motor action potential recordings before nerve section and again at an 8-week interval after neurorrhaphy. Nerve biopsy specimens were used for histomorphometric assessment of axonal regeneration and quantification of collagen at the repair site. RESULTS: Animals from group C had significantly lower motor action potential conduction velocities compared with control animals (P = .02), and no significant difference was seen between groups B and C. Parameters obtained from morphometric evaluation were not significantly different between these 2 groups. Type I collagen and III collagen in the epineurium were significantly higher in group C than in either the control group (P = .001 and P = .003) or group B (P = .01 and P = .02). No differences were identified for collagen I and III in the endoneurium. CONCLUSION: Using 6 sutures for nerve repair is associated with worse electrophysiological outcomes and higher amounts of type I and III collagen in the epineurium compared with control. Neurorraphy with 6 stitches is also related to a significant increase in epineurium collagen I and III compared with 3-stitch neurorraphy.
Resumo:
Background. Periodontal disease is often associated with systemic diseases and is characterized by destruction of the tissues supporting the teeth. Patients using immunosuppressive drugs such as tacrolimus are among those who suffer from tissue destruction. Objective. We sought to evaluate the effects of laser and photodynamic therapies (PDT; nonsurgical) as an adjunct to scaling and rootplaning (SRP) in the treatment of corona-induced periodontitis in rats immunosuppressed with tacrolimus (Prograf). Materials and Methods. The animals were divided into 5 groups. Each groups had 6 rats. Group I, the control group, received only saline solution throughout the study period of 42 days and did not receive periodontal treatment; group II received saline solution and SRP; group III received tacrolimus (1 mg/kg per day) and was treated with SRP; group IV animals were treated identically to group III and then administered laser treatment; and in group V, the animals were treated identically to group III and then administered PDT. Results. Statistical analysis indicated decreased bone loss with the progression of time (P = .035). There was no difference between the bone loss associated with the types of treatment administered to groups I, II, and III (P > .9) or groups IV and V (P > .6). The analysis also indicated that immunosuppression was not a bone loss-determining factor. Conclusion. Laser and PDT therapies were effective as an adjunctive treatment to SRP in reducing bone loss caused by experimental periodontitis induced in animals being treated systemically with tacrolimus.
Resumo:
Peripheral nerves are structures that, when damaged, can result in significant motor and sensory disabilities. Several studies have used therapeutic resources with the aim of promoting early nerve regeneration, such as the use of low-power laser. However, this laser therapy does not represent a consensus regarding the methodology, thus yielding controversial conclusions. The objective of our study was to investigate, by functional evaluation, the comparative effects of low-power laser (660 nm and 830 nm) on sciatic nerve regeneration following crushing injuries. Twenty-seven Wistar rats subjected to sciatic nerve injury were divided into three groups: group sham, consisting of rats undergoing simulated irradiation; a group consisting of rats subjected to gallium-aluminum-arsenide (GaAlAs) laser at 660 nm (10 J/cm(2), 30 mW and 0.06 cm(2) beam), and another one consisting of rats subjected to GaAlAs laser at 830 nm (10 J/cm(2), 30 mW and 0.116 cm(2)). Laser was applied to the lesion for 21 days. A sciatic functional index (SFI) was used for functional evaluation prior to surgery and on days 7, 14, and 21 after surgery. Differences in SFI were found between group 660 nm and the other ones at the 14th day. One can observe that laser application at 660 nm with the parameters and methods utilised was effective in promoting early functional recovery, as indicated by the SFI, over the period evaluated.
Resumo:
Objective: To study the influence of low power GaAsAl laser irradiation on the regeneration of a peripheral nerve, following a controlled crush injury. Material and methods: The right common fibular nerve of 30 Wistar rats was submitted to a crush injury with an adjustable load forceps (5 000 g, 10 minutes of application). The animals were divided into three groups (n=10), according to the postoperative procedure (no irradiation; sham irradiation; effective irradiation). Laser irradiation (830 nm wave-length; 100 mW emission power; continuous mode; 140 J/cm(2)) was started on the first postoperative day and continued over 21 consecutive days. Body mass, time spent on the walking track and functional peroneal index (PFI) were analyzed based on the hind footprints, both preoperatively and on the 21st postoperative day. Results: Walking time and PFI significantly improved in the group that received effective laser irradiation, despite the significant gain in body mass between the pre- and post-operative periods. Conclusion: Low Power GaAsAl laser irradiation, with the parameters used in our study, accelerated and improved fibular nerve regeneration in rats.
Resumo:
Objective: This study seeks to determine, through functional gait assessment in different irradiation sites, the influence of a low-intensity GaAsAl laser beam on an injury caused by crushing the peroneal nerve in rats. Methods: 53 rats were used, which were divided into six groups: normal, injured and untreated, injured and treated using placebo, injured and treated in the bone marrow, injured and treated in the nerve, and injured and treated in both (nerve and bone marrow). The peroneal nerve was crushed using a pair of tweezers, and subsequently treated with laser for 28 consecutive days. The functional gait evaluation analyzed the footprints, which were recorded with a video camera on an acrylic bridge in the preoperative period, and on postoperative days 14, 21 and 28, and assessed using PFI formula software. Results: In the functional gait evaluation, significant differences were found only on postoperative day 14. Conclusion: Based on the functional gait evaluation, low-intensity GaAs AI irradiation was able to accelerate and reinforce the process of peripheral nerve regeneration in rats on postoperative day 14, both in the bone marrow- and in the nerve-treated groups.