950 resultados para Reflection high energy electron diffraction
Resumo:
We present a novel approach to calculating Low-Energy Electron Diffraction (LEED) intensities for ordered molecular adsorbates. First, the intra-molecular multiple scattering is computed to obtain a non-diagonal molecular T-matrix. This is then used to represent the entire molecule as a single scattering object in a conventional LEED calculation, where the Layer Doubling technique is applied to assemble the different layers, including the molecular ones. A detailed comparison with conventional layer-type LEED calculations is provided to ascertain the accuracy of this scheme of calculation. Advantages of this scheme for problems involving ordered arrays of molecules adsorbed on surfaces are discussed.
Resumo:
The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm(2) of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d(max) and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm(2) at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose calculation for 4 and 6 MeV electron beams of Varian linear accelerators.
Resumo:
Photoemission techniques, utilizing a synchrotron light source, were used to analyze the clean (100) surfaces of the zinc-blende semiconductor materials CdTe and InSb. Several interfacial systems involving the surfaces of these materials were also studied, including the CdTe(lOO)-Ag interface, the CdTe(lOO)-Sb system, and the InSb(lOO)-Sn interface. High-energy electron diffraction was also employed to acquire information about of surface structure. A one-domain (2xl) structure was observed for the CdTe(lOO) surface. Analysis of photoemission spectra of the Cd 4d core level for this surface structure revealed two components resulting from Cd surface atoms. The total intensity of these components accounts for a full monolayer of Cd atoms on the surface. A structural model is discussed commensurate with these results. Photoemission spectra of the Cd and Te 4d core levels indicate that Ag or Sb deposited on the CdTe(l00)-(2xl) surface at room temperature do not bound strongly to the surface Cd atoms. The room temperature growth characteristics for these two elements on the CdTe(lOO)-(2xl) are discussed. The growth at elevated substrate temperatures was also studied for Sb deposition. The InSb(lOO) surface differed from the CdTe(lOO) surface. Using molecular beam epitaxy, several structures could be generated for the InSb(lOO) surface, including a c(8x2), a c(4x4), an asymmetric (lx3), a symmetric (lx3), and a (lxl). Analysis of photoemission intensities and line shapes indicates that the c(4x4) surface is terminated with 1-3/4 monolayers of Sb atoms. The c(8x2) surface is found to be terminated with 3/4 monolayer of In atoms. Structural models for both of these surfaces are proposed based upon the photoemission results and upon models of the similar GaAs(lOO) structures. The room temperature growth characteristics of grey Sn on the lnSb(lOO)-c(4x4) and InSb(l00)-c(8x2) surfaces were studied with photoemission. The discontinuity in the valence band maximum for this semiconductor heterojunction system is measured to be 0.40 eV, independent of the starting surface structure and stoichiometry. This result is reconciled with theoretical predictions for heterostructure behavior.
Resumo:
In this work, the synthesis of Y(2)O(3) stabilized tetragonal zirconia polycrystals (Y-TZP)-alumina (Al(2)O(3)) powder mixture was performed by high-energy ball milling and the sintering behavior of this composite was investigated. In order to understand the phase transformations occurring during ball milling, samples were collected after different milling times, from 1 to 60 h. The milled powders were compacted by cold uniaxial pressing and sintered at 1400 and 1600 degrees C. Both powders and sintered samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry analysis (EDS) and mechanical properties. Fully dense samples were obtained after sintering at 1600 degrees C, while the samples sintered at 1400 degrees C presented a full density for powder mixtures milled for 30 and 60 h. Fracture toughness and Vickers hardnessvalues of the Y-T-ZP/Al(2)O(3) nanocomposite were improved due to dispersed Al(2)O(3) grains and reduced ZrO(2) grain size. Samples sintered at 1400 degrees C, based on powders milled for 60 h, presented high K(IC) and hardness values near to 8.0 Mpan(1/2) and 15 GPa, respectively (C) 2008 Elsevier B.V. All rights reserved
Resumo:
A dual-Regge model with a nonlinear proton Regge trajectory in the missing mass (MX2) channel, describing the experimental data on low-mass single diffraction dissociation (SDD), is constructed. Predictions for the LHC energies are given.
Resumo:
This work discusses on the preparation of Ni-45Ti-5Mo, Ni-40Ti-10Mo and Ni-46Ti-2Mo-2Zr (at-%) alloys by high-energy ball milling and hot pressing, which are potentially attractive for dental and medical applications. The milling process was performed in stainless steel balls (19mm diameter) and vials (225 mL) using a rotary speed of 300rpm and a ball-to-powder weight ratio of 10:1. Hot pressing under vacuum was performed in a BN-coated graphite crucible at 900 degrees C for 1 h using a load of 20 MPa. The milled and hot-pressed materials were characterized by X-ray diffraction, electron scanning microscopy, and electron dispersive spectrometry. Peaks of B2-NiTi and Ni4Ti3 were identified in XRD patterns of Ni-45Ti-5Mo, Ni-40Ti-10Mo and Ni-46Ti-2Mo-2Zr powders milled for 1h. The NiTi compound dissolved small Mo amounts lower than 4 at%, which were measured by EDS analysis. Moreover, it was identified the existence of an unknown Mo-rich phase in microstructures of the hot-pressed Ni-Ti-Mo alloys.
Resumo:
The present work reports on the preparation of Al2O3-TiO2 ceramics by high-energy ball milling and sintering, varying the molar fraction in 1:1 and 3:1. The powder mixtures were processed in a planetary Fritsch P-5 ball mill using silicon nitride balls (10 mm diameter) and vials (225 mL), rotary speed of 250 rpm and a ball-to-powder weight ratio of 5:1. Samples were collected into the vial after different milling times. The milled powders were uniaxially compacted and sintered at 1300 and 1500 degrees C for 4h. The milled and sintered materials were characterized by X-ray diffraction and electron scanning microscopy (SEM). Results indicated that the intensity of Al2O3 and TiO2 peaks were reduced for longer milling times, suggesting that nanosized particles can be achieved. The densification of Al2O3-TiO2 ceramics was higher than 98% over the relative density in samples sintered at 1500 degrees C for 4h, which presented the formation of Al2TiO5.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study suggests the use of high energy ball milling to mix (to dope) the phase MgB2 with the AlB2 crystalline structure compound, ZrB2, with the same C32 hexagonal structure than MgB 2, in different concentrations, enabling the maintenance of the crystalline phase structures practically unaffected and the efficient mixture with the dopant. The high energy ball milling was performed with different ball-to-powder ratios. The analysis of the transformation and formation of phases was accomplished by X-ray diffractometry (XRD), using the Rietveld method, and scanning electron microscopy. As the high energy ball milling reduced the crystallinity of the milled compounds, also reducing the size of the particles, the XRD analysis were influenced, and they could be used as comparative and control method of the milling. Aiming the recovery of crystallinity, homogenization and final phase formation, heat treatments were performed, enabling that crystalline phases, changed during milling, could be obtained again in the final product. © (2010) Trans Tech Publications.
Resumo:
Recently, a new ternary phase was discovered in the Ti-Si-B system, located near the Ti6Si2B composition. The present study concerns the preparation of titanium alloys that contain such phase mixed with α-titanium and other intermetallic phases. High-purity powders were initially processed in a planetary ball-mill under argon atmosphere with Ti-18Si-6B and Ti-7.5Si-22.5B at. (%) initial compositions. Variation of parameters such as rotary speed, time, and ball diameters were adopted. The as-milled powders were pressureless sintered and hot pressed. Both the as-milled and sintered materials were characterized by X-ray diffraction, scanning electron microscopy and energy-dispersive spectrometry. Sintered samples have presented equilibrium structures formed mainly by the α-Ti+Ti6Si2B+Ti5Si3+TiB phases. Silicon and boron peaks disappear throughout the milling processes, as observed in the powder diffraction data. Furthermore, an iron contamination of up to 10 at. (%) is measured by X-ray spectroscopy analysis on some regions of the sintered samples. Density, hardness and tribological results for these two compositions are also presented here.
Resumo:
Precession electron diffraction (PED) is a hollow cone non-stationary illumination technique for electron diffraction pattern collection under quasikinematicalconditions (as in X-ray Diffraction), which enables “ab-initio” solving of crystalline structures of nanocrystals. The PED technique is recently used in TEMinstruments of voltages 100 to 300 kV to turn them into true electron iffractometers, thus enabling electron crystallography. The PED technique, when combined with fast electron diffraction acquisition and pattern matching software techniques, may also be used for the high magnification ultra-fast mapping of variable crystal orientations and phases, similarly to what is achieved with the Electron Backscatter Diffraction (EBSD) technique in Scanning ElectronMicroscopes (SEM) at lower magnifications and longer acquisition times.
Resumo:
The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 1012 electron volts and are bright sources of very-high-energy (VHE) γ-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy Messier 87, revealing a period of extremely strong VHE γ-ray flares accompanied by a strong increase of the radio flux from its nucleus. These results imply that charged particles are accelerated to very high energies in the immediate vicinity of the black hole.
Resumo:
We have investigated the effects of swift heavy ion irradiation on thermally evaporated 44 nm thick, amorphous Co77Fe23 thin films on silicon substrates using 100 MeV Ag7+ ions fluences of 1 1011 ions/ cm2, 1 1012 ions/cm2, 1 1013 ions/cm2, and 3 1013 ions/cm2. The structural modifications upon swift heavy irradiation were investigated using glancing angle X-ray diffraction. The surface morphological evolution of thin film with irradiation was studied using Atomic Force Microscopy. Power spectral density analysis was used to correlate the roughness variation with structural modifications investigated using X-ray diffraction. Magnetic measurements were carried out using vibrating sample magnetometry and the observed variation in coercivity of the irradiated films is explained on the basis of stress relaxation. Magnetic force microscopy images are subjected to analysis using the scanning probe image processor software. These results are in agreement with the results obtained using vibrating sample magnetometry. The magnetic and structural properties are correlated