930 resultados para Reflection high energy electron diffraction
Resumo:
The material presented in this thesis concerns the growth and characterization of III-V semiconductor heterostructures. Studies of the interactions between bound states in coupled quantum wells and between well and barrier bound states in AlAs/GaAs heterostructures are presented. We also demonstrate the broad array of novel tunnel structures realizable in the InAs/GaSb/AlSb material system. Because of the unique broken-gap band alignment of InAs/GaSb these structures involve transport between the conduction- and valence-bands of adjacent layers. These devices possess a wide range of electrical properties and are fundamentally different from conventional AlAs/GaAs tunnel devices. We report on the fabrication of a novel tunnel transistor with the largest reported room temperature current gains. We also present time-resolved studies of the growth fronts of InAs/GainSb strained layer superlattices and investigations of surface anion exchange reactions.
Chapter 2 covers tunneling studies of conventional AlAs/GaAs RTD's. The results of two studies are presented: (i) A test of coherent vs. sequential tunneling in triple barrier heterostructures, (ii) An optical measurement of the effect of barrier X-point states on Γ-point well states. In the first it was found if two quantum wells are separated by a sufficiently thin barrier, then the eigenstates of the system extend coherently across both wells and the central barriers. For thicker barriers between the wells, the electrons become localized in the individual wells and transport is best described by the electrons hopping between the wells. In the second, it was found that Γ-point well states and X-point barrier states interact strongly. The barrier X-point states modify the energies of the well states and increase the escape rate for carriers in the quantum well.
The results of several experimental studies of a novel class of tunnel devices realized in the InAs/GaSb/AlSb material system are presented in Chapter 3. These interband tunnel structures involve transport between conduction- and valence-band states in adjacent material layers. These devices are compared and contrasted with the conventional AlAs/GaAs structures discussed in Chapter 2 and experimental results are presented for both resonant and nonresonant devices. These results are compared with theoretical simulations and necessary extensions to the theoretical models are discussed.
In chapter 4 experimental results from a novel tunnel transistor are reported. The measured current gains in this transistor exceed 100 at room temperature. This is the highest reported gain at room temperature for any tunnel transistor. The device is analyzed and the current conduction and gain mechanisms are discussed.
Chapters 5 and 6 are studies of the growth of structures involving layers with different anions. Chapter 5 covers the growth of InAs/GainSb superlattices for far infrared detectors and time resolved, in-situ studies of their growth fronts. It was found that the bandgap of superlattices with identical layer thicknesses and compositions varied by as much as 40 meV depending on how their internal interfaces are formed. The absorption lengths in superlattices with identical bandgaps but whose interfaces were formed in different ways varied by as much as a factor of two. First the superlattice is discussed including an explanation of the device and the complications involved in its growth. The experimental technique of reflection high energy electron diffraction (RHEED) is reviewed, and the results of RHEED studies of the growth of these complicated structures are presented. The development of a time resolved, in-situ characterization of the internal interfaces of these superlattices is described. Chapter 6 describes the result of a detailed study of some of the phenomena described in chapter 5. X-ray photoelectron spectroscopy (XPS) studies of anion exchange reactions on the growth fronts of these superlattices are reported. Concurrent RHEED studies of the same physical systems studied with XPS are presented. Using the RHEED and XPS results, a real-time, indirect measurement of surface exchange reactions was developed.
Resumo:
Hexagonal GaN is grown on a Si(111) substrate with AlN as a buffer layer by gas source molecular beam epitaxy (GSMBE) with ammonia. The thickness of AlN buffer is changed from 9 to 72 nm. When the thickness of AlN buffer is 36 nm, the surface morphology and crystal quality of GaN is optimal. The in-situ reflection high energy electron diffraction (RHEED) reveals that the transition to a two-dimensional growth mode of AlN is the key to the quality of GaN. However, the thickness of AlN buffer is not so critical to the residual in-plane tensile stress in GaN grown on Si(111) by GSMBE for AlN thickness between 9 to 72 nm.
Resumo:
InAs quantum dots (QDs) were grown On Ultra-thin In0.15Ga0.85As strained layers by molecular beam epitaxy on GaAs (00 1) substrates. Combining reflection high-energy electron diffraction, atomic force microscopy and transmission electron microscopy, we analyzed the stress field of dislocations in the strained layer/substrate interface. Specially, we revealed the relative position of QDs and dislocations. We found that the difference of the stress field around dislocations is prominent when the strained layer is ultra-thin and the stress field will directly affect the following growth. On the strained layer surface, In0.15Ga0.85As ridges will form at the inclined upside of dislocations. Then, InAs QDs will prefer nucleating on the ridges, there is relatively small stress between InAs and In0.15Ga0.85As. By selecting ultra-thin In0.15Ga0.85As layer (50 nm) and controlling the QD layer at just form QDs, we obtained ordered InAs QDs. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Indium nitride (InN) films were grown on sapphire substrates by radio-frequency plasma-excited molecular beam epitaxy (RF-MBE). Atomic force microscopy (AFM), reflection high-energy electron diffraction (RHEED), double-crystal X-ray diffraction (DCXRD) and photoluminescence (PL) spectroscopy were used to characterize the InN films. The results show that the InN films have good crystallinity, with full-width at half-maximum (FWHM) of InN (0 0 0 2) DCXRD peak being 14 arcmin. At room temperature, a strong PL peak at 0.79eV was observed. At 1.9eV or so, no peak was observed. In addition, it is found that the InN films grown with low-temperature (LT) InN buffer layer are of better quality than those without LT-InN buffer layer. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We have demonstrated 1.5 mum light emission from InAs quantum dots (QDs) capped with a thin GaAs layer. The extension of the emission wavelength can be assigned to the large QD height. We also investigate the effect of growth interruption on the PL properties and the shape of InAs QDs fabricated by migration-enhanced growth (MEG). Contrary to expectation, we observed a remarkable blueshift of the emission energy with the growth interruption in MEG mode. Detailed investigations reveal that the blueshift is related to the reduced island height with the growth interruption, which is confirmed by reflection high-energy electron diffraction (RHEED) patterns and atomic force microscopy (AFM) measurement results. Accordingly, the structure changes of the islands are interpreted in terms of thermodynamic and kinetic theories. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The growth interruption (GI) effect on GaSb quantum dot formation grown on GaAs by molecular beam epitaxy was investigated. The structure characterization was performed by reflection high-energy electron diffraction (RHEED), along with photoluminescence measurements. It is found that the GI can significantly change the surface morphology of GaSb QDs. During the GI, the QDs structures can be smoothed out and turned into a 2D-like structure. The time duration of the GI required for the 3D/2D transition depends on the growth time of the GaSb layer. It increases with the increase of the growth time. Our results are explained by a combined effect of the stress relaxation process and surface exchange reactions during the GI. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The gamma-Al2O3 films were grown on Si (100) substrates using the sources of TMA (Al (CH3)(3)) and O-2 by very low-pressure chemical vapor deposition (VLP-CVD). It has been found that the gamma-Al2O3 film has a mirror-like surface and the RMS was about 2.5nm. And the orientation relationship was gamma-Al2O3(100)/Si(100). The thickness uniformity of gamma-Al2O3 films for 2-inch epi-wafer was less than 5%. The X-ray diffraction (XRD) and reflection high-energy electron diffraction (RHEED) results show that the crystalline quality of the film was improved after the film was annealed at 1000degreesC in O-2 atmosphere. The high-frequency C-V and leakage current of Al/gamma-Al2O3/Si capacitor were also measured to verify the annealing effect of the film. The results show that the dielectric constant increased from 4 to 7 and the breakdown voltage for 65-nm-thick gamma-Al2O3 film on silicon increases from 17V to 53V.
Resumo:
Epitaxial growth of InN on GaN(0001) by plasma-assisted molecular-beam epitaxy is investigated over a range of growth parameters including source flux and substrate temperature. Combining reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM), we establish a relationship between film growth mode and the deposition condition. Both two-dimensional (2D) and three-dimensional (3D) growth modes of the film are observed. For 2D growth, sustained RHEED intensity oscillations are recorded while STM reveals 2D nucleation islands. For 3D growth, less than three oscillation periods are observed indicating the Stranski-Krastanov (SK) growth mode of the film. Simultaneous measurements of (reciprocal) lattice constant by RHEED suggest a gradual relaxation of the strain in film, which commences during the first bilayer (BL) deposition and almost completes after 2-4 BLs. For SK growth, 3D islanding initiates after the strain has mostly been relieved, presumably by dislocations, so the islands are likely strain free. (C) 2002 American Institute of Physics.
Resumo:
High-quality GaN epilayers were grown on Si (1 1 1) substrate by metalorganic chemical vapor deposition. The growth process was featured by using an ultrathin AlN wetting layer (WL) in combination with a low-temperature (LT) GaN nucleation layer (NL). The full-width at half-maximum (FWHM) of the X-ray rocking curve for the GaN (0 0 0 2) diffraction was 15 arcmin. The dislocation density estimated from TEM investigation was found to be of the order of 10(9)cm(-2). The FWHM of the dominant band edge emission peak of the GaN was measured to be 47 meV by photoluminescence measurement at room temperature. The ultrathin AlN WL was produced by nitridation of the aluminium pre-covered substrate surface. The reflection high-energy electron diffraction showed that the AlN WL was wurtzite and the surface morphology was like the nitridated surface of sapphire by the atomic force microscopy measurement. X-ray photoelectron spectroscopy measurement showed that Si and SixNy at a certain concentration were intermixed in the AlN WL. This study suggests that by employing an appropriate WL combined with a LT NL, high-quality heteroepitaxy is achievable even with large mismatch. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The evolution of carbonization process on Si as a function of ion dose has been carried out by mass-selected ion-beam deposition technique. 3C-SiC layer has been obtained at low ion dose, which has been observed by reflection high energy electron diffraction and X-ray photoelectron spectroscopy (XPS). The chemical states of Si and carbon have also been examined as a function of ion dose by XPS. Carbon enrichment was found regardless of the used ion dose here, which may be due to the high deposition rate. The formation mechanism of SiC has also been discussed based on the subplantation process. The work will also provide further understanding of the ion-bombardment effect. (C) 2001 Published by Elsevier Science B.V.
Resumo:
The optimum growth condition of GaInNAs/GaAs quantum wells (QWs) by plasma-assisted molecular beam epitaxy was investigated. High-resolution X-ray diffraction and photoluminescence (PL) measurements showed that ion damage drastically degraded the quality of GaNAs and GaInNAs QWs and that ion removal magnets can effectively remove the excess ion damage. Remarkable improvement of PL intensity and obvious appearance of pendellosung fringes were observed by removing the N ions produced in the plasma cell. When the growth rate increased from 0.73 to 1.2 ML/s, the optimum growth temperature was raised from 460 degreesC to 480 degreesC and PL peak intensity increased two times. Although the N composition decreased with increasing growth rate, degradation of optical properties of GaInNAs QWs was observed when the growth rate was over 0.92 ML/s. Due to low-temperature growth of GaInNAs QWs, a distinctive reflection high-energy electron diffraction pattern was observed only when the GaAs barrier was grown under lower As-4 pressure. The samples with GaAs barriers grown under lower As-4 pressure (V/III ratio about 24) exhibited seven times increase in PL peak intensity compared with those grown under higher As-4 pressure (V/III ratio about 50). (C) 2001 Elsevier Science B,V. All rights reserved.
Resumo:
A CeO2 film with a thickness of about 80nm was deposited by a mass-analysed low-energy dual ion beam deposition technique on an Si(111) substrate. Reflection high-energy electron diffraction and x-ray diffraction measurements showed that the film is a single crystal. The tetravalent state of Ce in the film was confirmed by x-ray photoelectron spectroscopy measurements, indicating that stoichiometric CeO2 was formed. Violet/blue light emission (379.5 nm) was observed at room temperature, which may be tentatively explained by charge transitions from the 4f band to the valence band of CeO2.
Resumo:
Self-assembled InAs quantum wires (QWRs) embedded in In0.52Al0.48As, In0.53Ga0.47As, and (In0.52Al0.48As)(n)/(In0.53Ga0.47As)(m)-short-period-lattice matrices on InP(001) were fabricated with molecular beam epitaxy (MBE). These QWR lines are along [110], x 4 direction in the 2 x 4 reconstructed (001) surface as revealed with reflection high-energy electron diffraction (RHEED). Alignment of quantum wires in different layers in the InAs/spacer multilayer structures depends on the composition of spacer layers. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
An X-ray diffraction method, estimating the strain relaxation in an ultrathin layer, has been discussed by using kinematic and dynamical X-ray diffraction (XRD) theory. The characteristic parameter Delta Omega, used as the criterion of the strain relaxation in ultrathin layers, is deduced theoretically. It reveals that Delta Omega should be independent of the layer thickness in a coherently strained layer. By this method, we characterized our ultrathin GaNxAs1-x samples with N contents up to 5%. XRD measurements show that our GaNxAs1-x layers are coherently strained on GaAs even for such a large amount of N. Furthermore, a series of GaNxAs1-x samples with same N contents but different layer thicknesses were also characterized. It was found that the critical thickness (L-c) of GaNAs in the GaAs/GaNAs/GaAs structures determined by XRD measurement was 10 times smaller than the theoretical predictions based on the Matthews and Blakeslee model. This result was also confirmed by in situ observation of reflection high-energy electron diffraction (RHEED) and photoluminescence (PL) measurements. RHEED observation showed that the growth mode of GaNAs layer changed from 2D- to 3D-mode as the layer thickness exceeded L-c. PL measurements showed that the optical properties of GaNAs layers deteriorated rapidly as the layer thickness exceeded L-c. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Self-assembled In0.9Ga0.1As, In0.9Al0.1As, and InAs quantum dots (QD) were fabricated in an InAlAs matrix lattice-matched to an InP substrate by molecular beam epitaxy. Preliminary characterizations were performed using transmission electron microscopy, photoluminescence, and reflection high-energy electron diffraction. Experimental results reveal clear differences in QD formation, size distribution, and luminescence between the InAs and In-0.9(Ga/Al)(0.1)As samples, which show the potential of introducing ternary compositions to adjust the structural and optical properties of QDs on an InP substrate. (C) 2000 American Institute of Physics. [S0021-8979(00)10213-0].