961 resultados para Reductase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulation of the expression of dimethylsulfoxide (DMSO) reductase was investigated in the purple phototrophic bacterium Rhodobacter capsulatus. Under phototrophic, anaerobic conditions with malate as carbon source, DMSO caused an approximately 150-fold induction of DMSO reductase activity. The response regulator DorR was required for DMSO-dependent induction and also appeared to slightly repress DMSO reductase expression in the absence of substrate. Likewise, when pyruvate replaced malate as carbon source there was an induction of DMSO reductase activity in cells grown at low light intensity (16 W m(-2)) and again this induction was dependent on DorR. The level of DMSO reductase activity in aerobically grown cells was elevated when pyruvate replaced malate as carbon source. One possible explanation for this is that acetyl phosphate, produced from pyruvate, may activate expression of DMSO reductase by direct phosphorylation of DorR, leading to low levels of induction of dor gene expression in the absence of DMSO. A mutant lacking the global response regulator of photosynthesis gene expression, RegA, exhibited high levels of DMSO reductase in the absence of DMSO, when grown phototrophically with malate as carbon source. This suggests that phosphorylated RegA acts as a repressor of dor operon expression under these conditions. It has been proposed elsewhere that RegA-dependent expression is negatively regulated by the cytochrome cbb(3) oxidase. A cco mutant lacking cytochrome cbb(3) exhibited significantly higher levels of Phi[dorA::lacZ] activity in the presence of DMSO compared to wild-type cells and this is consistent with the above model. Pyruvate restored DMSO reductase expression in the regA mutant to the same pattern as found in wild-type cells. These data suggest that R. capsulatus contains a regulator of DMSO respiration that is distinct from DorR and RegA, is activated in the presence of pyruvate, and acts as a negative regulator of DMSO reductase expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dimethylsulfoxide (DMSO) reductase family of molybdenum enzymes is a large and diverse group that is found in bacteria and archaea. These enzymes are characterised by a bis(molybdopterin guanine dinucleotide)Mo form of the molybdenum cofactor, and they are particularly important in anaerobic respiration including the dissimilatory reduction of certain toxic oxoanions. The structural and phylogenetic relationship between the proteins of this family is discussed. High-resolution crystal structures of enzymes of the DMSO reductase family have revealed a high degree of similarity in tertiary structure. However, there is considerable variation in the structure of the molybdenum active site and it seems likely that these subtle but important differences lead to the great diversity of function seen in this family of enzymes. This diversity of catalytic capability is associated with several distinct pathways of electron transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Folate metabolism is critical to embryonic development, influencing neural tube defects (NTD) and recurrent early pregnancy loss. Polymorphisms in 5,10-methylenetetrahydrofolate reductase (MTHFR) have been associated with dizygotic (DZ) twinning through pregnancy loss. Methods: The C677T and A1298C polymorphisms in MTHFR were genotyped in 258 Australasian families (1016 individuals) and 118 Dutch families (462 individuals) of mothers of DZ twins and a population sample of 462 adolescent twin families (1861 individuals). Haplotypes were constructed from the alleles, and transmission of the MTHFR haplotypes to mothers of DZ twins and from parents to twins in the adolescent twin families analysed. Results: The C677T and A1298C were common in all three populations (frequencies > 0.29). There was strong linkage disequilibrium (D'=1) between the variants, showing that specific combinations of alleles (haplotypes) were transmitted together. Three haplotypes accounted for nearly all the variation. There was no evidence of any association between MTHFR genotype and twinning in mothers of twins, or of the loss of specific MTHFR genotypes during twin pregnancies. Conclusions: It is concluded that variation in twinning frequency is not associated with MTHFR genotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Polymorphisms located in genes involved in the metabolism of folate and some methyl-related nutrients are implicated in colorectal cancer (CRC). Objective: We evaluated the association of 3 genetic polymorphisms [C677T MTHFR (methylene tetrahydrofolate reductase), A2756G MTR (methionine synthase), and C1420T SHMT (serine hydroxymethyltransferase)] with the intake of methyl-donor nutrients in CRC risk. Design: Patients withCRC(n 196) and healthy controls (n 200) matched for age and sex were evaluated for intake of methyl-donor nutrients and the 3 polymorphisms. Results: Except for folate intake, which was significantly lower in patients (P 0.02), no differences were observed in the dietary intake of other methyl-donor nutrients between groups. High intake of folate ( 406.7 g/d) was associated with a significantly lower risk of CRC (odds ratio: 0.67; 95% CI: 0.45, 0.99). The A2756G MTR polymorphism was not associated with the risk of developing CRC. In contrast, homozygosity for the C677TMTHFRvariant (TT) presented a 3.0-fold increased risk of CRC (95% CI: 1.3, 6.7). Similarly, homozygosity for the C1420T SHMT polymorphism also had a 2.6-fold increased risk (95% CI: 1.1, 5.9) of developing CRC. When interactions between variables were studied, low intake of all methyl-donor nutrients was associated with an increased risk ofCRC in homozygous participants for the C677T MTHFR polymorphism, but a statistically significant interaction was only observed for folate (odds ratio: 14.0; 95% CI: 1.8, 108.5). No significant associations were seen for MTR or SHMT polymorphisms. Conclusion: These results show an association between the C677T MTHFR variant and different folate intakes on risk of CRC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superoxide reductase is a 14 kDa metalloprotein containing a catalytic nonhaem iron centre [Fe(His)4Cys]. It is involved in defence mechanisms against oxygen toxicity, scavenging superoxide radicals from the cell. The oxidized form of Treponema pallidum superoxide reductase was crystallized in the presence of polyethylene glycol and magnesium chloride. Two crystal forms were obtained depending on the oxidizing agents used after purification: crystals grown in the presence of K3Fe(CN)6 belonged to space group P21 (unit-cell parameters a = 60.3, b = 59.9, c = 64.8 A ° , = 106.9 ) and diffracted beyond 1.60 A ° resolution, while crystals grown in the presence of Na2IrCl6 belonged to space group C2 (a = 119.4, b = 60.1, c = 65.6 A ° , = 104.9 ) and diffracted beyond 1.55 A ° . A highly redundant X-ray diffraction data set from the C2 crystal form collected on a copper rotating-anode generator ( = 1.542 A ° ) clearly defined the positions of the four Fe atoms present in the asymmetric unit by SAD methods. A MAD experiment at the iron absorption edge confirmed the positions of the previously determined iron sites and provided better phases for model building and refinement. Molecular replacement using the P21 data set was successful using a preliminary trace as a search model. A similar arrangement of the four protein molecules could be observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eur. J. Biochem. 271, 2361–2369 (2004)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Journal of Biological Chemistry Vol. 278, No. 19, Issue of May 9, pp. 17455–17465, 2003

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors have standardized methods for evaluation of the activity of the glucose-6-phosphate dehydrogenase and of glutathione reductase. The general principle of the first method was based on methemoglobin formation by sodium nitrite followed by stimulation of the glucose-6-phosphate dehydrogenase with methylene blue. Forty six adults (23 males and 23 females) were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. The results showed that methemoglobin reduction by methylene blue was 154.40 and 139.90 mg/min (p<0.05) for males and females, respectively, in whole blood, and 221.10 and 207.85 mg/min (n.s.), respectively, in washed red cells. These data showed that using washed red cells and 0.7g% sodium nitrite concentration produced no differences between sexes and also shortened reading time for the residual amount of methemoglobin to 90 minutes. Glutathione reductase activity was evaluated on the basis of the fact that cystamine (a thiol agent) binds to the SH groups of hemoglobin, forming complexes. These complexes are reversed by the action of glutathione reductase, with methemoglobin reduction occurring simultaneously with this reaction. Thirty two adults (16 males and 16 females) were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. Methemoglobin reduction by cystamine was 81.27 and 91.13 mg/min (p<0.01) for males and females, respectively. These data showed that using washed red cells and 0.1 M cystamine concentration permits a reading of the residual amount of methemoglobin at 180 minutes of incubation. Glutathione reductase activity was evaluated by methemoglobin reduction by cystamine in 14 females before and after treatment with 10 mg riboflavin per day for 8 days. The results were 73.69 and 94.26 jug/min (p<0.01) before and after treatment, showing that riboflavin treatment increase glutathione reductase activity even in normal individuals. Three Black G6PD-deficient individuals (2 males and 1 female) were also studied. The G6PD and glutathione reductase were partially activated, the change being more intense in males. On the basis of race and of the laboratory characteristics observed, it is possible to suggest that the G6PD deficiency of these individuals is of the African type and that the female is heterozygous for this deficiency. Analysis of the results as a whole permitted us to conclude that the methods proposed here were efficient for evaluating the activity of the glucose-6-phosphate dehydrogenase and of glutathione reductase. The latter is dependent on the pentose pathway, which generates NADPH, and on riboflavin, a FAD precursor vitamin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desulfovibrio desulfuricans was the first species of a sulphatereducing bacterium to be isolated, in 1895. Since that time, many questions were raised in the scientific community regarding the metabolic and ecological aspects of these bacteria. At present, there is still a myriad of open questions remaining to be answered to enlarge our knowledge of the metabolic pathways operative in these bacteria that have implications in the sulfur cycle, in biocorrosion, namely in sewers and in oil and gas systems, and in bioremediation of several toxic metals. The work presented in this dissertation aimed at contributing with new insights of enzymes involved in two different metabolic systems on Desulfovibrio species, namely enzymes that play a role in the response to oxidative stress and that are involved in the haem biosynthetic pathway.(...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation submitted to obtain the phD degree in Biochemistry, specialty in Physical- Biochemistry, by the Faculdade de Ciências e Tecnologia from the Universidade Nova de Lisboa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada para a obtenção do Grau de Doutor em Química Sustentável pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hindawi Publishing Corporation Bioinorganic Chemistry and Applications Volume 2010, Article ID 634597, 8 pages