996 resultados para Red mud


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main constituents of red mud produced in Aluminio city (S.P., Brazil) are iron, aluminum, and silicon oxides. It has been determined that the average particle diameter for this red mud is between 0.05 and 0.002 mm. It is observed that a decrease in the percentage of smaller particles occurs at temperatures greater than 400 degrees C. This observation corresponds with the thermal analysis and X-ray diffraction (XRD) data, which illustrate the phase transition of goethite to hematite. A 10% mass loss is observed in the thermal analysis patterns due to the hydroxide-oxide phase transitions of iron (primary phase transition) and aluminum (to a lesser extent). The disappearance and appearance of the different phases of iron and aluminum confirms the decomposition reactions proposed by the thermal analysis data. This Brazilian red mud has been classified as mesoporous at all temperatures except between 400 and 500 degrees C where the classification changes to micro/mesoporous.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reuse of industrial by-products such as red mud is of great importance. In the case of the building material industry the reuse of red mud requires a cautious attitude, since the enhanced radionuclide content of red mud can have an effect on human health. The natural radionuclide content of red mud from the Ajka red mud reservoir and the clay sample from a Hungarian brick factory were determined by gamma spectrometry. It was found that maximum 27.8% red mud content can be added to fulfil the conditions of the EU-BSS. The effect of heat treatment was investigated on a red mud-clay mixture and it was found that in the case of radon and thoron exhalation the applied heat reduced remarkably the exhalation capacities. The leaching features of red mud and different mixtures were studied according to the MSZ-21470-50 Hungarian standard, the British CEN/TS 14429 standard and the Tessier sequential extraction method. The Tessier method and the MSZ-21470-50 standard are suitable for the characterization of materials; however, they do not provide enough information for waste deposition purposes. To this end, we propose using the CEN/TS 14429 method, because it is easy to use, and gives detailed information about the material's behaviour under different pH conditions, however, further measurements are necessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The naturally occurring radionuclide (226Ra,232Th and40K) content of building Materials (NORM) contributes to the total radiation dose experienced by humans. In this survey 27 clay and 68 red mud samples were surveyed with gamma spectrometry and screened according to European Basic Safety Standards (BSS) I-index. It was found that average I-index of clays was 0.6 (0.4–0.8) less than the I-index of 1, which makes them suitable for building material production. The average I-index of red mud 2.3 (1.3–3.0). The maximal mixing ratio of red mud was calculated, varied between 12 and 39 %, with 23 % average.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reuse of industrial by-products is important for members of numerous industrial sectors. However, though the benefits of reuse are evident from an economical point of view, some compounds in these materials can have a negative effect on users' health.In this study, the radon emanation and exhalation features of red mud were surveyed using heat-treatment (100-1200 °C). As a result of the 1200°C-treated samples, massic radon exhalation capacity reduced from 75 ± 10 mBq kg-1 h-1 to 7 ± 4 mBq kg-1 h-1, approximately 10% of the initial exhalation rate.To find an explanation for internal structural changes, the porosity features of the heat-treated samples were also investigated. It was found that the cumulative pore volume reduced significantly in less than 100 nm, which can explain the reduced massic exhalation capacity in the high temperature treated range mentioned above.SEM snapshots were taken of the surfaces of the samples as visual evidence for superficial morphological changes. It was found that the surface of the high temperature treated samples had changed, proving the decrement of open pores on the surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Little is known about long-term ecological responses in lakes following red mud pollution. Among red mud contaminants, arsenic (As) is of considerable concern. Determination of the species of As accumulated in aquatic organisms provides important information about the biogeochemical cycling of the element and transfer through the aquatic food-web to higher organisms. We used coupled ion chromatography and inductively coupled plasma mass spectrometry (ICP-MS) to assess As speciation in tissues of five macrophyte taxa in Kinghorn Loch, UK, 30 years following the diversion of red mud pollution from the lake. Toxic inorganic As was the dominant species in the studied macrophytes, with As species concentrations varying with macrophyte taxon and tissue type. The highest As content measured in roots of Persicaria amphibia (L.) Gray (87.2 mg kg-1) greatly exceeded the 3 - 10 mg kg-1 range suggested as a potential phytotoxic level. Accumulation of toxic As species by plants suggested toxicological risk to higher organisms known to utilise macrophytes as a food source.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The removal of toxic anions has been achieved using hydrotalcite via two methods: (1) coprecipitation and (2) thermal activation. Hydrotalcite formed via the coprecipitation method, using solutions containing arsenate and vanadate up to pH 10, are able to remove more than 95% of the toxic anions (0.2 M) from solution. The removal of toxic anions in solutions with a pH of >10 reduces the removal uptake percentage to 75%. Raman spectroscopy observed multiple A1 stretching modes of V−O and As−O at 930 and 810 cm−1, assigned to vanadate and arsenate, respectively. Analysis of the intensity and position of the A1 stretching modes helped to identify the vanadate and arsenate specie intercalated into the hydrotalcite structure. It has been determined that 3:1 hydrotalcite structure predominantly intercalate anions into the interlayer region, while the 2:1 and 4:1 hydrotalcite structures shows a large portion of anions being removed from solution by adsorption processes. Treatment of carbonate solutions (0.2 M) containing arsenate and vanadate (0.2 M) three times with thermally activated hydrotalcite has been shown to remove 76% and 81% of the toxic anions, respectively. Thermally activated hydrotalcite with a Mg:Al ratio of 2:1, 3:1, and 4:1 have all been shown to remove 95% of arsenate and vanadate (25 ppm). At increased concentrations of arsenate and vanadate, the removal uptake percentage decreased significantly, except for the 4:1 thermally activated hydrotalcite. Thermally activated Bayer hydrotalcite has also been shown to be highly effective in the removal of arsenate and vanadate. The thermal activation of the solid residue component (red mud) removes 30% of anions from solution (100 ppm of both anions), while seawater-neutralized red mud removes 70%. The formation of hydrotalcite during the seawater neutralization process removes anions via two mechanisms, rather than one observed for thermally activated red mud.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The presence of calcium hydroxide (Ca(OH)2) in Bayer residue slurry inhibits the effectiveness of the seawater neutralisation process to reduce the pH and aluminium concentration in the residue. An increase in the slurry pH (reversion), after seawater neutralisation, is caused by the dissolution of calcium hydroxide and hydrocalumite (solid components found in bauxite refinery residue). Reversion was not observed when the final solution pH was greater than 10.5, due to hydrocalumite being in a state of equilibrium at high pH. Hydrocalumite has been found to form during the neutralisation process when high concentrations of calcium hydroxide are present in the residue liquor. The dissolution of hydrocalumite releases hydroxyl (OH-) and aluminium ions back into solution after the seawater neutralisation (SWN) process, which causes pH and aluminium reversion to occur. This investigation looks at the effect of Ca(OH)2 and subsequently hydrocalumite on the pH and aluminium concentration in bauxite refinery residue liquors after the SWN process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bauxite refinery residues (red mud) are derived from the Bayer process by the digestion of crushed bauxite in concentrated sodium hydroxide at elevated temperatures and pressures. This slurry residue, if untreated, is unsuitable for discharge directly into the environment and is usually stored in tailing dams. The liquid portion has the potential for discharge, but requires pre-treatment before this can occur. The seawater neutralisation treatment facilitates a significant reduction in pH and dissolved metal concentrations, through the precipitation of hydrotalcite-like compounds and some other Mg, Ca, and Al hydroxide and carbonate minerals. The hydrotalcite-like compounds, precipitated during seawater neutralisation, also remove a range of transition metals, oxy-anions and other anionic species through a combination of intercalation and adsorption reactions: smaller anions are intercalated into the hydrotalcite matrix, while larger molecules are adsorbed on the particle surfaces. A phenomenon known as ‘reversion’ can occur if the seawater neutralisation process is not properly controlled. Reversion causes an increase in the pH and dissolved impurity levels of the neutralised effluent, rendering it unsuitable for discharge. It is believed that slow dissolution of components of the red mud residue and compounds formed during the neutralisation process are responsible for reversion. This investigation looked at characterising natural hydrotalcite (Mg6Al2(OH)16(CO3)∙4H2O) and ‘Bayer’ hydrotalcite (synthesised using the seawater neutralisation process) using a variety of techniques including X-ray diffraction, infrared and Raman spectroscopy, and thermogravimetric analysis. This investigation showed that Bayer hydrotalcite is comprised of a mixture of 3:1 and 4:1 hydrotalcite structures and exhibited similar chemical characteristic to the 4:1 synthetic hydrotalcite. Hydrotalcite formed from the seawater neutralisation of Bauxite refinery residues has been found not to cause reversion. Other components in red mud were investigated to determine the cause of reversion and this investigation found three components that contributed to reversion: 1) tricalcium aluminate, 2) hydrocalumite and 3) calcium hydroxide. Increasing the amount of magnesium in the neutralisation process has been found to be successful in reducing reversion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This investigation has shown that by transforming free caustic in red mud (RM) to Bayer hydrotalcite (during the seawater neutralization (SWN) process) enables a more controlled release mechanism for the neutralization of acid sulfate soils. The formation of hydrotalcite has been confirmed by X-ray diffraction (XRD) and differential thermalgravimetric analysis (DTG), while the dissolution of hydrotalcite and sodalite has been observed through XRD, DTG, pH plots, and ICP-OES. Coupling of all techniques enabled three neutralization mechanisms to be determined: (1) free alkali, (2) hydrotalcite dissolution, and (3) sodalite dissolution. The mechanisms are determined on the basis of ICP-OES and kinetic information. When the mass of RM or SWN-RM is greater than 0.08 g/50 mL, the pH of solution increases to a suitable value for plant life with aluminum leaching kept at a minimum. To obtain a neutralization pH greater than 6 in 10 min, the following ratio of bauxite residue (g) in 50 mL with a known iron sulfate (Fe2(SO4)3) concentration can be determined as follows: 0.04 g:50 mL:0.1 g/L of Fe2(SO4)3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This investigation has demonstrated the need for thermal treatment of seawater neutralised red mud (SWRM) in order to obtain reasonable adsorption of Reactive Blue dye 19 (RB 19). Thermal treatment results in a greater surface area, which results in an increased adsorption capacity due to more available adsorption sites. Adsorption of RB 19 has been found to be best achieved in acidic conditions using SWNRM400 (heated to 400 �C) with an adsorption capacity of 416.7 mg/g compared to 250.0 mg/g for untreated SWNRM. Kinetic studies indicate a pseudosecond-order reaction mechanism is responsible for the adsorption of RB 19 using SWNRM, which indicates adsorption occurs by electrostatic interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis gave a brief idea about removal fluoride using acid and thermally treated red mud. It is showed the importance of having a low and consistent PH, and the appropriate temperature for the removal of fluoride from aqueous solutions using red mud. According the data analyse, keep red mud in 1000°C and PH value around 4 can achieve the greatest fluoride adsorption.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This investigation used a combination of techniques, such as X-ray diffraction, inductively coupled plasma optical emission spectroscopy and infrared spectroscopy, to determine the dissolution mechanisms of the Bayer precipitate and the associated rate of dissolution in acetic, citric and oxalic acid environments. The Bayer precipitate is a mixture of hydrotalcite, calcium carbonate and sodium chloride that forms during the seawater neutralisation of Bayer liquors (waste residue of the alumina industry). The dissolution rate of a Bayer precipitate is found to be dependent on (1) the strength of the organic acid and (2) the number of donating H+ ions. The dissolution mechanism for a Bayer precipitate consists of several steps involving: (1) the dissolution of CaCO3, (2) formation of whewellite (calcium oxalate) when oxalic acid is used and (3) multiple dissolution steps for hydrotalcite that are highly dependent on the pH of solution. The decomposition of the Al–OH hydrotalcite layers resulted in the immediate formation of Al(OH)3, which is stable until the pH decreases below 5.5. This investigation has found that the Bayer precipitate is stable across a wide pH range in the presence of common organic acids found in the rhizosphere, and that initial decomposition steps are likely to be beneficial in supporting plant growth through the release of nutrients such as Ca2þ and Mg2þ.