901 resultados para Recommended Systems, Component Technolog, Customisation, Collaborative Filtering


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pervasive Sensing is a recent research trend that aims at providing widespread computing and sensing capabilities to enable the creation of smart environments that can sense, process, and act by considering input coming from both people and devices. The capabilities necessary for Pervasive Sensing are nowadays available on a plethora of devices, from embedded devices to PCs and smartphones. The wide availability of new devices and the large amount of data they can access enable a wide range of novel services in different areas, spanning from simple data collection systems to socially-aware collaborative filtering. However, the strong heterogeneity and unreliability of devices and sensors poses significant challenges. So far, existing works on Pervasive Sensing have focused only on limited portions of the whole stack of available devices and data that they can use, to propose and develop mainly vertical solutions. The push from academia and industry for this kind of services shows that time is mature for a more general support framework for Pervasive Sensing solutions able to enhance frail architectures, promote a well balanced usage of resources on different devices, and enable the widest possible access to sensed data, while ensuring a minimal energy consumption on battery-operated devices. This thesis focuses on pervasive sensing systems to extract design guidelines as foundation of a comprehensive reference model for multi-tier Pervasive Sensing applications. The validity of the proposed model is tested in five different scenarios that present peculiar and different requirements, and different hardware and sensors. The ease of mapping from the proposed logical model to the real implementations and the positive performance result campaigns prove the quality of the proposed approach and offer a reliable reference model, together with a direction for the design and deployment of future Pervasive Sensing applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract. We combine Artificial Immune Systems (AIS) technology with Collaborative Filtering (CF) and use it to build a movie recommendation system. We already know that Artificial Immune Systems work well as movie recommenders from previous work by Cayzer and Aickelin ([3], [4], [5]). Here our aim is to investigate the effect of different affinity measure algorithms for the AIS. Two different affinity measures, Kendall's Tau and Weighted Kappa, are used to calculate the correlation coefficients for the movie recommender. We compare the results with those published previously and show that that Weighted Kappa is more suitable than others for movie problems. We also show that AIS are generally robust movie recommenders and that, as long as a suitable affinity measure is chosen, results are good.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract. We combine Artificial Immune Systems (AIS) technology with Collaborative Filtering (CF) and use it to build a movie recommendation system. We already know that Artificial Immune Systems work well as movie recommenders from previous work by Cayzer and Aickelin ([3], [4], [5]). Here our aim is to investigate the effect of different affinity measure algorithms for the AIS. Two different affinity measures, Kendall's Tau and Weighted Kappa, are used to calculate the correlation coefficients for the movie recommender. We compare the results with those published previously and show that that Weighted Kappa is more suitable than others for movie problems. We also show that AIS are generally robust movie recommenders and that, as long as a suitable affinity measure is chosen, results are good.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The number of research papers available today is growing at a staggering rate, generating a huge amount of information that people cannot keep up with. According to a tendency indicated by the United States’ National Science Foundation, more than 10 million new papers will be published in the next 20 years. Because most of these papers will be available on the Web, this research focus on exploring issues on recommending research papers to users, in order to directly lead users to papers of their interest. Recommender systems are used to recommend items to users among a huge stream of available items, according to users’ interests. This research focuses on the two most prevalent techniques to date, namely Content-Based Filtering and Collaborative Filtering. The first explores the text of the paper itself, recommending items similar in content to the ones the user has rated in the past. The second explores the citation web existing among papers. As these two techniques have complementary advantages, we explored hybrid approaches to recommending research papers. We created standalone and hybrid versions of algorithms and evaluated them through both offline experiments on a database of 102,295 papers, and an online experiment with 110 users. Our results show that the two techniques can be successfully combined to recommend papers. The coverage is also increased at the level of 100% in the hybrid algorithms. In addition, we found that different algorithms are more suitable for recommending different kinds of papers. Finally, we verified that users’ research experience influences the way users perceive recommendations. In parallel, we found that there are no significant differences in recommending papers for users from different countries. However, our results showed that users’ interacting with a research paper Recommender Systems are much happier when the interface is presented in the user’s native language, regardless the language that the papers are written. Therefore, an interface should be tailored to the user’s mother language.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we provide a method that allows the visualization of similarity relationships present between items of collaborative filtering recommender systems, as well as the relative importance of each of these. The objective is to offer visual representations of the recommender system?s set of items and of their relationships; these graphs show us where the most representative information can be found and which items are rated in a more similar way by the recommender system?s community of users. The visual representations achieved take the shape of phylogenetic trees, displaying the numerical similarity and the reliability between each pair of items considered to be similar. As a case study we provide the results obtained using the public database Movielens 1M, which contains 3900 movies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La importancia de los sistemas de recomendación ha experimentado un crecimiento exponencial como consecuencia del auge de las redes sociales. En esta tesis doctoral presentaré una amplia visión sobre el estado del arte de los sistemas de recomendación. Incialmente, estos estaba basados en fitrado demográfico, basado en contendio o colaborativo. En la actualidad, estos sistemas incorporan alguna información social al proceso de recomendación. En el futuro utilizarán información implicita, local y personal proveniente del Internet de las cosas. Los sistemas de recomendación basados en filtrado colaborativo se pueden modificar con el fin de realizar recomendaciones a grupos de usuarios. Existen trabajos previos que han incluido estas modificaciones en diferentes etapas del algoritmo de filtrado colaborativo: búsqueda de los vecinos, predicción de las votaciones y elección de las recomendaciones. En esta tesis doctoral proporcionaré un nuevo método que realizar el proceso de unficación (pasar de varios usuarios a un grupo) en el primer paso del algoritmo de filtrado colaborativo: cálculo de la métrica de similaridad. Proporcionaré una formalización completa del método propuesto. Explicaré cómo obtener el conjunto de k vecinos del grupo de usuarios y mostraré cómo obtener recomendaciones usando dichos vecinos. Asimismo, incluiré un ejemplo detallando cada paso del método propuesto en un sistema de recomendación compuesto por 8 usuarios y 10 items. Las principales características del método propuesto son: (a) es más rápido (más eficiente) que las alternativas proporcionadas por otros autores, y (b) es al menos tan exacto y preciso como otras soluciones estudiadas. Para contrastar esta hipótesis realizaré varios experimentos que miden la precisión, la exactitud y el rendimiento del método. Los resultados obtenidos se compararán con los resultados de otras alternativas utilizadas en la recomendación de grupos. Los experimentos se realizarán con las bases de datos de MovieLens y Netflix. ABSTRACT The importance of recommender systems has grown exponentially with the advent of social networks. In this PhD thesis I will provide a wide vision about the state of the art of recommender systems. They were initially based on demographic, contentbased and collaborative filtering. Currently, these systems incorporate some social information to the recommendation process. In the future, they will use implicit, local and personal information from the Internet of Things. As we will see here, recommender systems based on collaborative filtering can be used to perform recommendations to group of users. Previous works have made this modification in different stages of the collaborative filtering algorithm: establishing the neighborhood, prediction phase and determination of recommended items. In this PhD thesis I will provide a new method that carry out the unification process (many users to one group) in the first stage of the collaborative filtering algorithm: similarity metric computation. I will provide a full formalization of the proposed method. I will explain how to obtain the k nearest neighbors of the group of users and I will show how to get recommendations using those users. I will also include a running example of a recommender system with 8 users and 10 items detailing all the steps of the method I will present. The main highlights of the proposed method are: (a) it will be faster (more efficient) that the alternatives provided by other authors, and (b) it will be at least as precise and accurate as other studied solutions. To check this hypothesis I will conduct several experiments measuring the accuracy, the precision and the performance of my method. I will compare these results with the results generated by other methods of group recommendation. The experiments will be carried out using MovieLens and Netflix datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This technical note develops information filter and array algorithms for a linear minimum mean square error estimator of discrete-time Markovian jump linear systems. A numerical example for a two-mode Markovian jump linear system, to show the advantage of using array algorithms to filter this class of systems, is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recommendation systems have been growing in number over the last fifteen years. To evolve and adapt to the demands of the actual society, many paradigms emerged giving birth to even more paradigms and hybrid approaches. These approaches contain strengths and weaknesses that need to be evaluated according to the knowledge area in which the system is going to be implemented. Mobile devices have also been under an incredible growth rate in every business area, and there are already lots of mobile based systems to assist tourists. This explosive growth gave birth to different mobile applications, each having their own advantages and disadvantages. Since recommendation and mobile systems might as well be integrated, this work intends to present the current state of the art in tourism mobile and recommendation systems, as well as to state their advantages and disadvantages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

he expansion of Digital Television and the convergence between conventional broadcasting and television over IP contributed to the gradual increase of the number of available channels and on demand video content. Moreover, the dissemination of the use of mobile devices like laptops, smartphones and tablets on everyday activities resulted in a shift of the traditional television viewing paradigm from the couch to everywhere, anytime from any device. Although this new scenario enables a great improvement in viewing experiences, it also brings new challenges given the overload of information that the viewer faces. Recommendation systems stand out as a possible solution to help a watcher on the selection of the content that best fits his/her preferences. This paper describes a web based system that helps the user navigating on broadcasted and online television content by implementing recommendations based on collaborative and content based filtering. The algorithms developed estimate the similarity between items and users and predict the rating that a user would assign to a particular item (television program, movie, etc.). To enable interoperability between different systems, programs characteristics (title, genre, actors, etc.) are stored according to the TV-Anytime standard. The set of recommendations produced are presented through a Web Application that allows the user to interact with the system based on the obtained recommendations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La comunitat científica que treballa en Intel·ligència Artificial (IA) ha dut a terme una gran quantitat de treball en com la IA pot ajudar a les persones a trobar el que volen dins d'Internet. La idea dels sistemes recomanadors ha estat extensament acceptada pels usuaris. La tasca principal d'un sistema recomanador és localitzar ítems, fonts d'informació i persones relacionades amb els interessos i preferències d'una persona o d'un grup de persones. Això comporta la construcció de models d'usuari i l'habilitat d'anticipar i predir les preferències de l'usuari. Aquesta tesi està focalitzada en l'estudi de tècniques d'IA que millorin el rendiment dels sistemes recomanadors. Inicialment, s'ha dut a terme un anàlisis detallat de l'actual estat de l'art en aquest camp. Aquest treball ha estat organitzat en forma de taxonomia on els sistemes recomanadors existents a Internet es classifiquen en 8 dimensions generals. Aquesta taxonomia ens aporta una base de coneixement indispensable pel disseny de la nostra proposta. El raonament basat en casos (CBR) és un paradigma per aprendre i raonar a partir de la experiència adequat per sistemes recomanadors degut als seus fonaments en el raonament humà. Aquesta tesi planteja una nova proposta de CBR aplicat al camp de la recomanació i un mecanisme d'oblit per perfils basats en casos que controla la rellevància i edat de les experiències passades. Els resultats experimentals demostren que aquesta proposta adapta millor els perfils als usuaris i soluciona el problema de la utilitat que pateixen el sistemes basats en CBR. Els sistemes recomanadors milloren espectacularment la qualitat dels resultats quan informació sobre els altres usuaris és utilitzada quan es recomana a un usuari concret. Aquesta tesi proposa l'agentificació dels sistemes recomanadors per tal de treure profit de propietats interessants dels agents com ara la proactivitat, la encapsulació o l'habilitat social. La col·laboració entre agents es realitza a partir del mètode de filtratge basat en la opinió i del mètode col·laboratiu de filtratge a partir de confiança. Els dos mètodes es basen en un model social de confiança que fa que els agents siguin menys vulnerables als altres quan col·laboren. Els resultats experimentals demostren que els agents recomanadors col·laboratius proposats milloren el rendiment del sistema mentre que preserven la privacitat de les dades personals de l'usuari. Finalment, aquesta tesi també proposa un procediment per avaluar sistemes recomanadors que permet la discussió científica dels resultats. Aquesta proposta simula el comportament dels usuaris al llarg del temps basat en perfils d'usuari reals. Esperem que aquesta metodologia d'avaluació contribueixi al progrés d'aquesta àrea de recerca.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El treball desenvolupat en aquesta tesi presenta un profund estudi i proveïx solucions innovadores en el camp dels sistemes recomanadors. Els mètodes que usen aquests sistemes per a realitzar les recomanacions, mètodes com el Filtrat Basat en Continguts (FBC), el Filtrat Col·laboratiu (FC) i el Filtrat Basat en Coneixement (FBC), requereixen informació dels usuaris per a predir les preferències per certs productes. Aquesta informació pot ser demogràfica (Gènere, edat, adreça, etc), o avaluacions donades sobre algun producte que van comprar en el passat o informació sobre els seus interessos. Existeixen dues formes d'obtenir aquesta informació: els usuaris ofereixen explícitament aquesta informació o el sistema pot adquirir la informació implícita disponible en les transaccions o historial de recerca dels usuaris. Per exemple, el sistema recomanador de pel·lícules MovieLens (http://movielens.umn.edu/login) demana als usuaris que avaluïn almenys 15 pel·lícules dintre d'una escala de * a * * * * * (horrible, ...., ha de ser vista). El sistema genera recomanacions sobre la base d'aquestes avaluacions. Quan els usuaris no estan registrat en el sistema i aquest no té informació d'ells, alguns sistemes realitzen les recomanacions tenint en compte l'historial de navegació. Amazon.com (http://www.amazon.com) realitza les recomanacions tenint en compte les recerques que un usuari a fet o recomana el producte més venut. No obstant això, aquests sistemes pateixen de certa falta d'informació. Aquest problema és generalment resolt amb l'adquisició d'informació addicional, se li pregunta als usuaris sobre els seus interessos o es cerca aquesta informació en fonts addicionals. La solució proposada en aquesta tesi és buscar aquesta informació en diverses fonts, específicament aquelles que contenen informació implícita sobre les preferències dels usuaris. Aquestes fonts poden ser estructurades com les bases de dades amb informació de compres o poden ser no estructurades com les pàgines web on els usuaris deixen la seva opinió sobre algun producte que van comprar o posseïxen. Nosaltres trobem tres problemes fonamentals per a aconseguir aquest objectiu: 1 . La identificació de fonts amb informació idònia per als sistemes recomanadors. 2 . La definició de criteris que permetin la comparança i selecció de les fonts més idònies. 3 . La recuperació d'informació de fonts no estructurades. En aquest sentit, en la tesi proposada s'ha desenvolupat: 1 . Una metodologia que permet la identificació i selecció de les fonts més idònies. Criteris basats en les característiques de les fonts i una mesura de confiança han estat utilitzats per a resoldre el problema de la identificació i selecció de les fonts. 2 . Un mecanisme per a recuperar la informació no estructurada dels usuaris disponible en la web. Tècniques de Text Mining i ontologies s'han utilitzat per a extreure informació i estructurar-la apropiadament perquè la utilitzin els recomanadors. Les contribucions del treball desenvolupat en aquesta tesi doctoral són: 1. Definició d'un conjunt de característiques per a classificar fonts rellevants per als sistemes recomanadors 2. Desenvolupament d'una mesura de rellevància de les fonts calculada sobre la base de les característiques definides 3. Aplicació d'una mesura de confiança per a obtenir les fonts més fiables. La confiança es definida des de la perspectiva de millora de la recomanació, una font fiable és aquella que permet millorar les recomanacions. 4. Desenvolupament d'un algorisme per a seleccionar, des d'un conjunt de fonts possibles, les més rellevants i fiable utilitzant les mitjanes esmentades en els punts previs. 5. Definició d'una ontologia per a estructurar la informació sobre les preferències dels usuaris que estan disponibles en Internet. 6. Creació d'un procés de mapatge que extreu automàticament informació de les preferències dels usuaris disponibles en la web i posa aquesta informació dintre de l'ontologia. Aquestes contribucions permeten aconseguir dos objectius importants: 1 . Millorament de les recomanacions usant fonts d'informació alternatives que sigui rellevants i fiables. 2 . Obtenir informació implícita dels usuaris disponible en Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Web service is one of the most fundamental technologies in implementing service oriented architecture (SOA) based applications. One essential challenge related to web service is to find suitable candidates with regard to web service consumer’s requests, which is normally called web service discovery. During a web service discovery protocol, it is expected that the consumer will find it hard to distinguish which ones are more suitable in the retrieval set, thereby making selection of web services a critical task. In this paper, inspired by the idea that the service composition pattern is significant hint for service selection, a personal profiling mechanism is proposed to improve ranking and recommendation performance. Since service selection is highly dependent on the composition process, personal knowledge is accumulated from previous service composition process and shared via collaborative filtering where a set of users with similar interest will be firstly identified. Afterwards a web service re-ranking mechanism is employed for personalised recommendation. Experimental studies are conduced and analysed to demonstrate the promising potential of this research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We apply the Artificial Immune System (AIS)technology to the collaborative Filtering (CF)technology when we build the movie recommendation system. Two different affinity measure algorithms of AIS, Kendall tau and Weighted Kappa, are used to calculate the correlation coefficients for this movie recommendation system. From the testing we think that Weighted Kappa is more suitable than Kendall tau for movie problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We apply the Artificial Immune System (AIS)technology to the collaborative Filtering (CF)technology when we build the movie recommendation system. Two different affinity measure algorithms of AIS, Kendall tau and Weighted Kappa, are used to calculate the correlation coefficients for this movie recommendation system. From the testing we think that Weighted Kappa is more suitable than Kendall tau for movie problems.