971 resultados para Recombinant antigens
Resumo:
Current methods for the control of the cattle tick Boophils microplus and the agent of bovine babesiosis, Babesia bovis are unsatisfactory. Effective immunological control of both parasites would have great advantages. However, naturally acquired immunity to the tick is generally unable to prevent serious production losses. A vaccine against the tick, based on a novel form of immunization, is being developed. A protective antigen has been isolated from the tick, characterized and produced as an effective, recombinant protein. A vaccine incorporating this antigen is currently undergoing field trials. In the Australian situation, improved tick control will probably increase endemic instability with respect to B. bovis. Fortunately, a trivalent, recombinant B. bovis vaccine has also been developed. This too is now undergoing pre-registration field trials.
Resumo:
A kit based on an enzyme immunoassay, EIE-Recombinant-Chagas-Biomanguinhos, developed by the Oswaldo Cruz Foundation, was evaluated for the serodiagnosis of chronic Chagas disease. Evaluation was performed with 368 serum samples collected from individuals living in an endemic area for Chagas disease: 131 patients in the chronic phase with confirmed clinical, epidemiological, and serological diagnosis (indirect immunofluorescence, indirect hemagglutination or enzyme-linked immunosorbent assay) and 237 nonchagasic seronegative individuals were considered negative control. The EIE-Recombinant-Chagas-Biomanguinhos kit showed high sensitivity, 100% (CI 95%: 96.4-100%) and high specificity, 100% (CI 95%: 98-100%). The data obtained were in full agreement with clinical and conventional serology data. In addition, no cross-reaction was observed with sera from patients with cutaneous (n=14) and visceral (n=3) leishmaniasis. However, when these sera were tested by conventional serological assays for Chagas disease, cross-reactions were detected in 14.3% and 33.3% of the patients with cutaneous and visceral leishmaniasis, respectively. No cross-reactions were observed when sera from nonchagasic seronegative patients bearing other infectious disease (syphilis, n=8; HTLV, n=8; HCV, n=7 and HBV, n=12) were tested. In addition, sera of patients with inconclusive results for Chagas disease by conventional serology showed results in agreement with clinical evaluation, when tested by the kit. These results are relevant and indicate that the refered kit provides a safe immunodiagnosis of Chagas disease and could be used in blood bank screening.
Resumo:
Schistosoma mansoni infection or associated products are able to down-modulate the type 1 CD4+ T cell inflammatory response characteristic of autoimmune diseases. In this study, we evaluated how S. mansoni antigens altered the immune response that was induced by the soluble Leishmania antigen (SLA) from cutaneous leishmaniasis (CL) patients. Cytokines were measured from the supernatants of peripheral blood mononuclear cell cultures stimulated with SLA. This was performed using the sandwich enzyme linked immunosorbent assay technique in the presence or absence of S. mansoni recombinant antigens Sm29, SmTSP-2 and PIII. The addition of S. mansoni antigens to the cultures resulted in the reduction of interferon gamma (IFN-γ) levels in 37-50% of patients. Although to a lesser extent, the antigens were also able to decrease the production of tumour necrosis factor-alpha (TNF-α). We compared patients that either had or did not have reduction in IFN-γ and TNF-α production in cultures stimulated with SLA in the presence of S. mansoni antigens. We found that there was no significant difference in the levels of interleukin (IL)-10 and IL-5 in response to S. mansoni antigens between the groups. The antigens used in this study down-modulated the in vitro proinflammatory response induced by SLA in a group of CL patients through a currently undefined mechanism.
Resumo:
Vaccinia virus (VACV) encodes an anti-apoptotic Bcl-2-like protein F1 that acts as an inhibitor of caspase-9 and of the Bak/Bax checkpoint but the role of this gene in immune responses is not known. Because dendritic cells that have phagocytosed apoptotic infected cells cross-present viral antigens to cytotoxic T cells inducing an antigen-specific immunity, we hypothesized that deletion of the viral anti-apoptotic F1L gene might have a profound effect on the capacity of poxvirus vectors to activate specific immune responses to virus-expressed recombinant antigens. This has been tested in a mouse model with an F1L deletion mutant of the HIV/AIDS vaccine candidate MVA-C that expresses Env and Gag-Pol-Nef antigens (MVA-C-ΔF1L). The viral gene F1L is not required for virus replication in cultured cells and its deletion in MVA-C induces extensive apoptosis and expression of immunomodulatory genes in infected cells. Analysis of the immune responses induced in BALB/c mice after DNA prime/MVA boost revealed that, in comparison with parental MVA-C, the mutant MVA-C-ΔF1L improves the magnitude of the HIV-1-specific CD8 T cell adaptive immune responses and impacts on the CD8 T cell memory phase by enhancing the magnitude of the response, reducing the contraction phase and changing the memory differentiation pattern. These findings reveal the immunomodulatory role of F1L and that the loss of this gene is a valid strategy for the optimization of MVA as vaccine vector.
Resumo:
Three recombinant antigens of Treponema pallidum Nichols strain were fused with GST, cloned and expressed in Escherichia coli, resulting in high levels of GST-rTp47 and GST-rTp17 expression, and supplementation with arginine tRNA for the AGR codon was needed to obtain GST-rTp15 overexpression. Purified fusion protein yields were 1.9, 1.7 and 5.3 mg/l of cell culture for GST-rTp47, GST-rTp17 and GST-rTp15, respectively. The identities of the antigens obtained were confirmed by automated DNA sequencing using ABI Prism 310 and peptide mapping by Finningan LC/MS. These recombinant antigens were evaluated by immuno-slot blot techniques applied to 137 serum samples from patients with a clinical and laboratory diagnosis of syphilis (61 samples), from healthy blood donors (50 samples), individuals with sexually transmitted disease other than syphilis (3 samples), and from individuals with other spirochetal diseases such as Lyme disease (20 samples) and leptospirosis (3 samples). The assay had sensitivity of 95.1% (95% CI, 86.1 to 98.7%) and a specificity of 94.7% (95% CI, 87.0 to 98.7%); a stronger reactivity was observed with fraction rTp17. The immunoreactivity results showed that fusion recombinant antigens based-immuno-slot blot techniques are suitable for use in diagnostic assays for syphilis.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
BACKGROUND: Antibodies have an essential role in the acquired immune response against blood stage P. falciparum infection. Although several antigens have been identified as important antibody targets, it is still elusive which antigens have to be recognized for clinical protection. Herein, we analyzed antibodies from plasmas from symptomatic or asymptomatic individuals living in the same geographic area in the Western Amazon, measuring their recognition of multiple merozoite antigens. METHODS: Specific fragments of genes encoding merozoite proteins AMA1 and members of MSP and EBL families from circulating P. falciparum field isolates present in asymptomatic and symptomatic patients were amplified by PCR. After cloning and expression of different versions of the antigens as recombinant GST-fusion peptides, we tested the reactivity of patients' plasmas by ELISA and the presence of IgG subclasses in the most reactive plasmas. RESULTS: 11 out of 24 recombinant antigens were recognized by plasmas from either symptomatic or asymptomatic infections. Antibodies to MSP9 (X2(DF=1) = 9.26/p = 0.0047) and MSP5 (X2(DF=1) = 8.29/p = 0.0069) were more prevalent in asymptomatic individuals whereas the opposite was observed for MSP1 block 2-MAD20 (X2(DF=1) = 6.41/p = 0.0206, Fisher's exact test). Plasmas from asymptomatic individuals reacted more intensely against MSP4 (U = 210.5, p < 0.03), MSP5 (U = 212, p < 0.004), MSP9 (U = 189.5, p < 0.002) and EBA175 (U = 197, p < 0.014, Mann-Whitney's U test). IgG1 and IgG3 were predominant for all antigens, but some patients also presented with IgG2 and IgG4. The recognition of MSP5 (OR = 0.112, IC95% = 0.021-0.585) and MSP9 (OR = 0.125, IC95% = 0.030-0.529, cross tab analysis) predicted 8.9 and 8 times less chances, respectively, to present symptoms. Higher antibody levels against MSP5 and EBA175 were associated by odds ratios of 9.4 (IC95% = 1.29-69.25) and 5.7 (IC95% = 1.12-29.62, logistic regression), respectively, with an asymptomatic status. CONCLUSIONS: Merozoite antigens were targets of cytophilic antibodies and antibodies against MSP5, MSP9 and EBA175 were independently associated with decreased symptoms.
Resumo:
We investigated the protective potential of recombinant his-tagged antigens recNcMIC1, recNcMIC3 and recNcROP2, applied either as single vaccines or as vaccine combinations, in BALB/c mouse models for cerebral and fetal infection. Subsequently, mice were mated and challenged by i.p. inoculation of 2 x 10(6)Neospora caninum tachyzoites at day 7 of pregnancy. The mortality and morbidity of adult mice (non-pregnant and dams) and of the newborn pups was studied for a period of 40 days following birth. Vaccination of non-pregnant mice with recNcROP2 or combinations of recNcROP2 with recNcMIC antigens significantly reduced the numbers of mice suffering from clinical signs, and morbidity was completely prevented with the combination of all three antigens. Of the dams, the groups receiving either recNcROP2 alone or the combination of all three antigens did not exhibit any morbidity, the groups receiving ROP2 mixed with either MIC1 or MIC3 exhibited reduced numbers of deaths, and in the infection control group and the adjuvant group 50% and 43% of mice, respectively, succumbed to disease. For pups, the highest survival rates were noted for the groups receiving recNcROP2 (50%) and recNcROP2/NcMIC1/NcMIC3 (35%), while in the infection- and adjuvant- control groups all pups died, the latest at days 25 and 30, respectively. Quantification of parasite DNA by N. caninum-specific real-time PCR revealed consistently lower parasite burdens in brain tissue of pups from vaccinated groups compared with the controls. However, dense granule antigen 2 (GRA2) real-time reverse transcriptase-PCR on brain tissue of surviving pups (applied here to detect viable parasites) demonstrated that only the pups from the group vaccinated with all three antigens in combination appeared free of viable tachyzoites, while in all other groups viable parasites were still present. Serological analysis of humoral (total IgG, IgG1 and IgG2a) and serum cytokine (IL-4 and IFN-gamma) responses showed that this effect was associated with a Th-2-biased immune response, with a clearly elevated IL-4/IFN-gamma ratio in the mice receiving all three antigens in combination. In conclusion, a mixture of recombinant antigens representing important secretory micronemal and rhoptry proteins leads to a significant protection against vertical transmission of N. caninum in mice.
Resumo:
Two recombinant Fasciola hepatica antigens, saposin-like protein-2 (recSAP2) and cathepsin L-1 (recCL1), were assessed individually and in combination in enzyme-linked immunosorbent assays (ELISA) for the specific serodiagnosis of human fasciolosis in areas of low endemicity as encountered in Central Europe. Antibody detection was conducted using ProteinA/ProteinG (PAG) conjugated to alkaline phosphatase. Test characteristics as well as agreement with results from an ELISA using excretory-secretory products (FhES) from adult stage liver flukes was assessed by receiver operator characteristic (ROC) analysis, specificity, sensitivity, Youdens J and overall accuracy. Cross-reactivity was assessed using three different groups of serum samples from healthy individuals (n=20), patients with other parasitic infections (n=87) and patients with malignancies (n=121). The best combined diagnostic results for recombinant antigens were obtained using the recSAP2-ELISA (87% sensitivity, 99% specificity and 97% overall accuracy) employing the threshold (cut-off) to discriminate between positive and negative reactions that maximized Youdens J. The findings showed that recSAP2-ELISA can be used for the routine serodiagnosis of chronic fasciolosis in clinical laboratories; the use of the PAG-conjugate offers the opportunity to employ, for example, rabbit hyperimmune serum for the standardization of positive controls.
Resumo:
Buruli ulcer, caused by infection with Mycobacterium ulcerans, is a necrotizing disease of the skin and subcutaneous tissue, which is most prevalent in rural regions of West African countries. The majority of clinical presentations seen in patients are ulcers on limbs that can be treated by eight weeks of antibiotic therapy. Nevertheless, scarring and permanent disabilities occur frequently and Buruli ulcer still causes high morbidity. A vaccine against the disease is so far not available but would be of great benefit if used for prophylaxis as well as therapy. In the present study, vesicular stomatitis virus-based RNA replicon particles encoding the M. ulcerans proteins MUL2232 and MUL3720 were generated and the expression of the recombinant antigens characterized in vitro. Immunisation of mice with the recombinant replicon particles elicited antibodies that reacted with the endogenous antigens of M. ulcerans cells. A prime-boost immunization regimen with MUL2232-recombinant replicon particles and recombinant MUL2232 protein induced a strong immune response but only slightly reduced bacterial multiplication in a mouse model of M. ulcerans infection. We conclude that a monovalent vaccine based on the MUL2232 antigen will probably not sufficiently control M. ulcerans infection in humans.
Resumo:
It was previously shown that the Haemonchus contortus apical gut surface proteins p46, p52, and p100 induced protective immunity to challenge infections in goats. Here, it is shown that the three proteins are all encoded by a single gene (GA1) and initially expressed in adult parasites as a polyprotein (p100GA1). p46GA1 and p52GA1 are related proteins with 47% sequence identity, including a cysteine-containing region, which appears to confer secondary structure to these proteins, and a region with sequence similarity to bacterial Tolb proteins. GA1 protein expression is regulated during the life cycle at the level of transcript abundance. Only p52GA1 has characteristics of a glycosylinositolphospholipid membrane-anchored protein. However, both p46GA1 and p52GA1 were released from the gut membrane by phosphatidylinositol specific-phospholipase C, suggesting that p46GA1 membrane association depends on interactions with a glycosylinositolphospholipid gut membrane protein. Finally, GA1 proteins occur in abomasal mucus of infected lambs, demonstrating possible presentation to the host immune system during H. contortus infection. The results identify multiple characteristics of the GA1 proteins that should be considered for design of recombinant antigens for vaccine trials and that implicate a series of cellular processes leading to modification and expression of GA1 proteins at the nematode apical gut surface.
Resumo:
Objectives Recombinant protein subunit vaccines are formulated using protein antigens that have been synthesized in heterologous host cells. Several host cells are available for this purpose, ranging from Escherichia coli to mammalian cell lines. This article highlights the benefits of using yeast as the recombinant host. Key findings The yeast species, Saccharomyces cerevisiae and Pichia pastoris, have been used to optimize the functional yields of potential antigens for the development of subunit vaccines against a wide range of diseases caused by bacteria and viruses. Saccharomyces cerevisiae has also been used in the manufacture of 11 approved vaccines against hepatitis B virus and one against human papillomavirus; in both cases, the recombinant protein forms highly immunogenic virus-like particles. Summary Advances in our understanding of how a yeast cell responds to the metabolic load of producing recombinant proteins will allow us to identify host strains that have improved yield properties and enable the synthesis of more challenging antigens that cannot be produced in other systems. Yeasts therefore have the potential to become important host organisms for the production of recombinant antigens that can be used in the manufacture of subunit vaccines or in new vaccine development.
Resumo:
Background: Micrurus corallinus (coral snake) is a tropical forest snake belonging to the family Elapidae. Its venom shows a high neurotoxicity associated with pre- and post-synaptic toxins, causing diaphragm paralysis, which may result in death. In spite of a relatively small incidence of accidents, serum therapy is crucial for those bitten. However, the adequate production of antiserum is hampered by the difficulty in obtaining sufficient amounts of venom from a small snake with demanding breeding conditions. In order to elucidate the molecular basis of this venom and to uncover possible immunogens for an antiserum, we generated expressed sequences tags (ESTs) from its venom glands and analyzed the transcriptomic profile. In addition, their immunogenicity was tested using DNA immunization. Results: A total of 1438 ESTs were generated and grouped into 611 clusters. Toxin transcripts represented 46% of the total ESTs. The two main toxin classes consisted of three-finger toxins (3FTx) (24%) and phospholipases A(2) (PLA(2)s) (15%). However, 8 other classes of toxins were present, including C-type lectins, natriuretic peptide precursors and even high-molecular mass components such as metalloproteases and L-amino acid oxidases. Each class included an assortment of isoforms, some showing evidence of alternative splicing and domain deletions. Five antigenic candidates were selected (four 3FTx and one PLA(2)) and used for a preliminary study of DNA immunization. The immunological response showed that the sera from the immunized animals were able to recognize the recombinant antigens. Conclusion: Besides an improvement in our knowledge of the composition of coral snake venoms, which are very poorly known when compared to Old World elapids, the expression profile suggests abundant and diversified components that may be used in future antiserum formulation. As recombinant production of venom antigens frequently fails due to complex disulfide arrangements, DNA immunization may be a viable alternative. In fact, the selected candidates provided an initial evidence of the feasibility of this approach, which is less costly and not dependent on the availability of the venom.
Resumo:
Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease that affects populations worldwide. We have identified in proteomic studies a protein that is encoded by the gene LIC10314 and expressed in virulent strain of L. interrogans serovar Pomona. This protein was predicted to be surface exposed by PSORT program and contains a p83/100 domain identified by BLAST analysis that is conserved in protein antigens of several strains of Borrelia and Treponema spp. The proteins containing this domain have been claimed antigen candidates for serodiagnosis of Lyme borreliosis. Thus, we have cloned the LIC10314 and expressed the protein in Escherichia coli BL21-SI strain by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and characterized by circular dichroism spectroscopy. This protein is conserved among several species of pathogenic Leptospira and absent in the saprophytic strain L. biflexa. We confirm by liquid-phase immunofluorescence assays with living organisms that this protein is most likely a new surface leptospiral protein. The ability of the protein to mediate attachment to ECM components was evaluated by binding assays. The leptospiral protein encoded by LIC10314, named Lsa63 (Leptospiral surface adhesin of 63 kDa), binds strongly to laminin and collagen IV in a dose-dependent and saturable fashion. In addition, Lsa63 is probably expressed during infection since it was recognized by antibodies of serum samples of confirmed-leptospirosis patients in convalescent phase of the disease. Altogether, the data suggests that this novel identified surface protein may be involved in leptospiral pathogenesis. (C) 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
SUMMARY Chagas disease is a public health problem worldwide. The availability of diagnostic tools to predict the development of chronic Chagas cardiomyopathy is crucial to reduce morbidity and mortality. Here we analyze the prognostic value of adenosine deaminase serum activity (ADA) and C-reactive protein serum levels (CRP) in chagasic individuals. One hundred and ten individuals, 28 healthy and 82 chagasic patients were divided according to disease severity in phase I (n = 35), II (n = 29), and III (n = 18). A complete medical history, 12-lead electrocardiogram, chest X-ray, and M-mode echocardiogram were performed on each individual. Diagnosis of Chagas disease was confirmed by ELISA and MABA using recombinant antigens; ADA was determined spectrophotometrically and CRP by ELISA. The results have shown that CRP and ADA increased linearly in relation to disease phase, CRP being significantly higher in phase III and ADA at all phases. Also, CRP and ADA were positively correlated with echocardiographic parameters of cardiac remodeling and with electrocardiographic abnormalities, and negatively with ejection fraction. CRP and ADA were higher in patients with cardiothoracic index ≥ 50%, while ADA was higher in patients with ventricular repolarization disturbances. Finally, CRP was positively correlated with ADA. In conclusion, ADA and CRP are prognostic markers of cardiac dysfunction and remodeling in Chagas disease.