836 resultados para Rear-end crashes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Any incident on motorways potentially can be followed by secondary crashes. Rear-end crashes also could happen as a result of queue formation downstream of high speed platoons. To decrease the occurrence of secondary crashes and rear-end crashes, Variable Speed Limits (VSL) can be applied to protect queue formed downstream. This paper focuses on fine tuning the Queue Protection algorithm of VSL. Three performance indicators: activation time, deactivation time and number of false alarms are selected to optimise the Queue Protection algorithm. A calibrated microscopic traffic simulation model of Pacific Motorway in Brisbane is used for the optimisation. Performance of VSL during an incident and heavy congestion and the benefit of VSL will be presented in the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traffic safety studies mandate more than what existing micro-simulation models can offer as they postulate that every driver exhibits a safe behaviour. All the microscopic traffic simulation models are consisting of a car-following model and the Gazis–Herman–Rothery (GHR) car-following model is a widely used model. This paper highlights the limitations of the GHR car-following model capability to model longitudinal driving behaviour for safety study purposes. This study reviews and compares different version of the GHR model. To empower the GHR model on precise metrics reproduction a new set of car-following model parameters is offered to simulate unsafe vehicle conflicts. NGSIM vehicle trajectory data is used to evaluate the new model and short following headways and Time to Collision are employed to assess critical safety events within traffic flow. Risky events are extracted from available NGSIM data to evaluate the modified model against the generic versions of the GHR model. The results from simulation tests illustrate that the proposed model does predict the safety metrics better than the generic GHR model. Additionally it can potentially facilitate assessing and predicting traffic facilities’ safety using microscopic simulation. The new model can predict Near-miss rear-end crashes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The process of building safer roads and roadsides needs to be managed to minimise risks to both the road using public and roadworkers. However, detailed and accurate data on fatalities and injuries at roadworks across Australia are not available. The lack of reliable safety records and consequent poor understanding of the hazards at roadworks motivated this research to examine the common trends in incidents and to understand workers' perceptions of the causes of incidents at roadworks. To achieve these aims, 66 roadworks personnel were interviewed in Queensland including road construction workers, traffic controllers, engineers, and managers. Qualitative analyses identified several major issues and themes. Vehicles driving into work areas, traffic controllers hit by vehicles, rear end crashes at roadwork approaches, and reversing incidents involving work vehicles and machinery were the most common types of incidents. Roadworkers perceived driver errors, such as violation of speed limits, distracted driving, and ignoring signage and traffic controllers' instructions as the main causes of the incidents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multitasking, such as the concurrent use of a mobile phone and operating a motor vehicle, is a significant distraction that impairs driving performance and is becoming a leading cause of motor vehicle crashes. This study investigates the impact of mobile phone conversations on car-following behaviour. The CARRS-Q Advanced Driving Simulator was used to test a group of young Australian drivers aged 18 to 26 years on a car-following task in three randomised phone conditions: baseline (no phone conversation), hands-free and handheld. Repeated measure ANOVA was applied to examine the effect of mobile phone distraction on selected car-following variables such as driving speed, spacing, and time headway. Overall, drivers tended to select slower driving speeds, larger vehicle spacings, and longer time headways when they were engaged in either hands-free or handheld phone conversations, suggesting possible risk compensatory behaviour. In addition, phone conversations while driving influenced car-following behaviour such that variability was increased in driving speeds, vehicle spacings, and acceleration and decelerations. To further investigate car-following behaviour of distracted drivers, driver time headways were modelled using Generalized Estimation Equation (GEE). After controlling for various exogenous factors, the model predicts an increase of 0.33 seconds in time headway when a driver is engaged in hands-free phone conversation and a 0.75 seconds increase for handheld phone conversation. The findings will improve the collective understanding of distraction on driving performance, in particular car following behaviour which is most critical in the determination of rear-end crashes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multitasking, such as the concurrent use of a mobile phone and operating a motor vehicle, is a significant distraction that impairs driving performance and is becoming a leading cause of motor vehicle crashes. This study investigates the impact of mobile phone conversations on car-following behaviour. The CARRS-Q Advanced Driving Simulator was used to test a group of young Australian drivers aged 18–26 years on a car-following task in three randomised phone conditions: baseline (no phone conversation), hands-free and handheld. Repeated measure ANOVA was applied to examine the effect of mobile phone distraction on selected car-following variables such as driving speed, spacing, and time headway. Overall, drivers tended to select slower driving speeds, larger vehicle spacings, and longer time headways when they were engaged in either hands-free or handheld phone conversations, suggesting possible risk compensatory behaviour. In addition, phone conversations while driving influenced car-following behaviour such that variability was increased in driving speeds, vehicle spacings, and acceleration and decelerations. To further investigate car-following behaviour of distracted drivers, driver time headways were modelled using Generalized Estimation Equation (GEE). After controlling for various exogenous factors, the model predicts an increase of 0.33 s in time headway when a driver is engaged in hands-free phone conversation and a 0.75 s increase for handheld phone conversation. The findings will improve the collective understanding of distraction on driving performance, in particular car following behaviour which is most critical in the determination of rear-end crashes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many studies focused on the development of crash prediction models have resulted in aggregate crash prediction models to quantify the safety effects of geometric, traffic, and environmental factors on the expected number of total, fatal, injury, and/or property damage crashes at specific locations. Crash prediction models focused on predicting different crash types, however, have rarely been developed. Crash type models are useful for at least three reasons. The first is motivated by the need to identify sites that are high risk with respect to specific crash types but that may not be revealed through crash totals. Second, countermeasures are likely to affect only a subset of all crashes—usually called target crashes—and so examination of crash types will lead to improved ability to identify effective countermeasures. Finally, there is a priori reason to believe that different crash types (e.g., rear-end, angle, etc.) are associated with road geometry, the environment, and traffic variables in different ways and as a result justify the estimation of individual predictive models. The objectives of this paper are to (1) demonstrate that different crash types are associated to predictor variables in different ways (as theorized) and (2) show that estimation of crash type models may lead to greater insights regarding crash occurrence and countermeasure effectiveness. This paper first describes the estimation results of crash prediction models for angle, head-on, rear-end, sideswipe (same direction and opposite direction), and pedestrian-involved crash types. Serving as a basis for comparison, a crash prediction model is estimated for total crashes. Based on 837 motor vehicle crashes collected on two-lane rural intersections in the state of Georgia, six prediction models are estimated resulting in two Poisson (P) models and four NB (NB) models. The analysis reveals that factors such as the annual average daily traffic, the presence of turning lanes, and the number of driveways have a positive association with each type of crash, whereas median widths and the presence of lighting are negatively associated. For the best fitting models covariates are related to crash types in different ways, suggesting that crash types are associated with different precrash conditions and that modeling total crash frequency may not be helpful for identifying specific countermeasures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to estimate the safety impact of roadway interventions engineers need to collect, analyze, and interpret the results of carefully implemented data collection efforts. The intent of these studies is to develop Accident Modification Factors (AMF's), which are used to predict the safety impact of various road safety features at other locations or in upon future enhancements. Models are typically estimated to estimate AMF's for total crashes, but can and should be estimated for crash outcomes as well. This paper first describes data collected with the intent estimate AMF's for rural intersections in the state of Georgia within the United Sates. Modeling results of crash prediction models for the crash outcomes: angle, head-on, rear-end, sideswipe (same direction and opposite direction) and pedestrian-involved crashes are then presented and discussed. The analysis reveals that factors such as the Annual Average Daily Traffic (AADT), the presence of turning lanes, and the number of driveways have a positive association with each type of crash, while the median width and the presence of lighting are negatively associated with crashes. The model covariates are related to crash outcome in different ways, suggesting that crash outcomes are associated with different pre-crash conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Safety at roadway intersections is of significant interest to transportation professionals due to the large number of intersections in transportation networks, the complexity of traffic movements at these locations that leads to large numbers of conflicts, and the wide variety of geometric and operational features that define them. A variety of collision types including head-on, sideswipe, rear-end, and angle crashes occur at intersections. While intersection crash totals may not reveal a site deficiency, over exposure of a specific crash type may reveal otherwise undetected deficiencies. Thus, there is a need to be able to model the expected frequency of crashes by collision type at intersections to enable the detection of problems and the implementation of effective design strategies and countermeasures. Statistically, it is important to consider modeling collision type frequencies simultaneously to account for the possibility of common unobserved factors affecting crash frequencies across crash types. In this paper, a simultaneous equations model of crash frequencies by collision type is developed and presented using crash data for rural intersections in Georgia. The model estimation results support the notion of the presence of significant common unobserved factors across crash types, although the impact of these factors on parameter estimates is found to be rather modest.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is important to examine the nature of the relationships between roadway, environmental, and traffic factors and motor vehicle crashes, with the aim to improve the collective understanding of causal mechanisms involved in crashes and to better predict their occurrence. Statistical models of motor vehicle crashes are one path of inquiry often used to gain these initial insights. Recent efforts have focused on the estimation of negative binomial and Poisson regression models (and related deviants) due to their relatively good fit to crash data. Of course analysts constantly seek methods that offer greater consistency with the data generating mechanism (motor vehicle crashes in this case), provide better statistical fit, and provide insight into data structure that was previously unavailable. One such opportunity exists with some types of crash data, in particular crash-level data that are collected across roadway segments, intersections, etc. It is argued in this paper that some crash data possess hierarchical structure that has not routinely been exploited. This paper describes the application of binomial multilevel models of crash types using 548 motor vehicle crashes collected from 91 two-lane rural intersections in the state of Georgia. Crash prediction models are estimated for angle, rear-end, and sideswipe (both same direction and opposite direction) crashes. The contributions of the paper are the realization of hierarchical data structure and the application of a theoretically appealing and suitable analysis approach for multilevel data, yielding insights into intersection-related crashes by crash type.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Traffic oscillations are typical features of congested traffic flow that are characterized by recurring decelerations followed by accelerations (stop-and-go driving). The negative environmental impacts of these oscillations are widely accepted, but their impact on traffic safety has been debated. This paper describes the impact of freeway traffic oscillations on traffic safety. This study employs a matched case-control design using high-resolution traffic and crash data from a freeway segment. Traffic conditions prior to each crash were taken as cases, while traffic conditions during the same periods on days without crashes were taken as controls. These were also matched by presence of congestion, geometry and weather. A total of 82 cases and about 80,000 candidate controls were extracted from more than three years of data from 2004 to 2007. Conditional logistic regression models were developed based on the case-control samples. To verify consistency in the results, 20 different sets of controls were randomly extracted from the candidate pool for varying control-case ratios. The results reveal that the standard deviation of speed (thus, oscillations) is a significant variable, with an average odds ratio of about 1.08. This implies that the likelihood of a (rear-end) crash increases by about 8% with an additional unit increase in the standard deviation of speed. The average traffic states prior to crashes were less significant than the speed variations in congestion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Crashes on motorway contribute to a significant proportion (40-50%) of non-recurrent motorway congestions. Hence reduce crashes will help address congestion issues (Meyer, 2008). Crash likelihood estimation studies commonly focus on traffic conditions in a Short time window around the time of crash while longer-term pre-crash traffic flow trends are neglected. In this paper we will show, through data mining techniques, that a relationship between pre-crash traffic flow patterns and crash occurrence on motorways exists, and that this knowledge has the potential to improve the accuracy of existing models and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with traffic flow data of one hour prior to the crash using an incident detection algorithm. Traffic flow trends (traffic speed/occupancy time series) revealed that crashes could be clustered with regards of the dominant traffic flow pattern prior to the crash. Using the k-means clustering method allowed the crashes to be clustered based on their flow trends rather than their distance. Four major trends have been found in the clustering results. Based on these findings, crash likelihood estimation algorithms can be fine-tuned based on the monitored traffic flow conditions with a sliding window of 60 minutes to increase accuracy of the results and minimize false alarms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Crashes that occur on motorways contribute to a significant proportion (40-50%) of non-recurrent motorway congestions. Hence, reducing the frequency of crashes assists in addressing congestion issues (Meyer, 2008). Crash likelihood estimation studies commonly focus on traffic conditions in a short time window around the time of a crash while longer-term pre-crash traffic flow trends are neglected. In this paper we will show, through data mining techniques that a relationship between pre-crash traffic flow patterns and crash occurrence on motorways exists. We will compare them with normal traffic trends and show this knowledge has the potential to improve the accuracy of existing models and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with crashes corresponding to traffic flow data using an incident detection algorithm. Traffic trends (traffic speed time series) revealed that crashes can be clustered with regards to the dominant traffic patterns prior to the crash. Using the K-Means clustering method with Euclidean distance function allowed the crashes to be clustered. Then, normal situation data was extracted based on the time distribution of crashes and were clustered to compare with the “high risk” clusters. Five major trends have been found in the clustering results for both high risk and normal conditions. The study discovered traffic regimes had differences in the speed trends. Based on these findings, crash likelihood estimation models can be fine-tuned based on the monitored traffic conditions with a sliding window of 30 minutes to increase accuracy of the results and minimize false alarms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Crashes that occur on motorways contribute to a significant proportion (40-50%) of non-recurrent motorway congestion. Hence, reducing the frequency of crashes assist in addressing congestion issues (Meyer, 2008). Analysing traffic conditions and discovering risky traffic trends and patterns are essential basics in crash likelihood estimations studies and still require more attention and investigation. In this paper we will show, through data mining techniques, that there is a relationship between pre-crash traffic flow patterns and crash occurrence on motorways, compare them with normal traffic trends, and that this knowledge has the potentiality to improve the accuracy of existing crash likelihood estimation models, and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with crashes corresponding traffic flow data using an incident detection algorithm. Traffic trends (traffic speed time series) revealed that crashes can be clustered with regards to the dominant traffic patterns prior to the crash occurrence. K-Means clustering algorithm applied to determine dominant pre-crash traffic patterns. In the first phase of this research, traffic regimes identified by analysing crashes and normal traffic situations using half an hour speed in upstream locations of crashes. Then, the second phase investigated the different combination of speed risk indicators to distinguish crashes from normal traffic situations more precisely. Five major trends have been found in the first phase of this paper for both high risk and normal conditions. The study discovered traffic regimes had differences in the speed trends. Moreover, the second phase explains that spatiotemporal difference of speed is a better risk indicator among different combinations of speed related risk indicators. Based on these findings, crash likelihood estimation models can be fine-tuned to increase accuracy of estimations and minimize false alarms.