937 resultados para Reactors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation for the Master degree in Biotechnology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Los materiales lignocelulósicos residuales de las actividades agroindustriales pueden ser aprovechados como fuente de lignina, hemicelulosa y celulosa. El tratamiento químico del material lignocelulósico se debe enfrentar al hecho de que dicho material es bastante recalcitrante a tal ataque, fundamentalmente debido a la presencia del polímero lignina. Esto se puede lograr también utilizando hongos de la podredumbre blanca de la madera. Estos producen enzimas lignolíticas extracelulares fundamentalmente Lacasa, que oxida la lignina a CO2. Tambien oxida un amplio rango de sustratos ( fenoles, polifenoles, anilinas, aril-diaminas, fenoles metoxi-sustituídos, y otros), lo cual es una buena razón de su atracción para aplicaciones biotecnológicas. La enzima tiene potencial aplicación en procesos tales como en la delignificación de materiales lignocelulósicos y en el bioblanqueado de pulpas para papel, en el tratamiento de aguas residuales de plantas industriales, en la modificación de fibras y decoloración en industrias textiles y de colorantes, en el mejoramiento de alimentos para animales, en la detoxificación de polutantes y en bioremediación de suelos contaminados. También se la ha utilizado en Q.Orgánica para la oxidación de grupos funcionales, en la formación de enlaces carbono- nitrógeno y en la síntesis de productos naturales complejos. HIPOTESIS: Los hongos de podredumbre blanca, y en condiciones óptimas de cultivo producen distintos tipos de enzimas oxidasas, siendo las lacasas las más adecuadas para explorarlas como catalizadores en los siguientes procesos:  Delignificación de residuos de la industria forestal con el fin de aprovechar tales desechos en la alimentación animal.  Decontaminación/remediación de suelos y/o efluentes industriales. Se realizarán los estudios para el diseño de bio-reactores que permitan responder a las dos cuestiones planteadas en la hipótesis. Para el proceso de delignificación de material lignocelulósico se proponen dos estrategias: 1- tratar el material con el micelio del hongo adecuando la provisión de nutrientes para un desarrollo sostenido y favorecer la liberación de la enzima. 2- Utilizar la enzima lacasa parcialmente purificada acoplada a un sistema mediador para oxidar los compuestos polifenólicos. Para el proceso de decontaminación/remediación de suelos y/o efluentes industriales se trabajará también en dos frentes: 3) por un lado, se ha descripto que existe una correlación positiva entre la actividad de algunas enzimas presentes en el suelo y la fertilidad. En este sentido se conoce que un sistema enzimático, tentativamente identificado como una lacasa de origen microbiano es responsable de la transformación de compuestos orgánicos en el suelo. La enzima protege al suelo de la acumulación de compuestos orgánicos peligrosos catalizando reacciones que involucran degradación, polimerización e incorporación a complejos del ácido húmico. Se utilizarán suelos incorporados con distintos polutantes(por ej. policlorofenoles ó cloroanilinas.) 4) Se trabajará con efluentes industriales contaminantes (alpechínes y/o el efluente líquido del proceso de desamargado de las aceitunas). The lignocellulosic raw materials of the agroindustrial activities can be taken advantage as source of lignin, hemicellulose and cellulose. The chemical treatment of this material is not easy because the above mentioned material is recalcitrant enough to such an assault, due to the presence of the lignin. This can be achieved also using the white-rot fungi of the wood. It produces extracellular ligninolitic enzymes, fundamentally Laccase, which oxidizes the lignin to CO2. The enzyme has application in such processes as in the delignification of lignocellulosic materials and in the biobleaching of fibers for paper industry, in the treatment of waste water of industrial plants, in the discoloration in textile industries, in the improvement of food for ruminants, in the detoxification of polutants and in bioremediation of contaminated soils. HYPOTHESIS: The white-rot fungi produce different types of enzymes, being the laccases the most adapted to explore them as catalysts in the following processes:  Delignification of residues of the forest industry in order to take advantage of such waste in the animal feed.  Decontamination of soils and / or waste waters. The studies will be conducted for the design of bio reactors that allow to answer to both questions raised in the hypothesis. For the delignification process of lignocellulosic material they propose two strategies: 1- to treat the material with the fungi 2-to use the partially purified enzyme to oxidize the polyphenolic compounds. For the soil and/or waste water decontamination process, we have: 3- Is know that the enzyme protects to the soil of the accumulation of organic dangerous compounds catalyzing reactions that involve degradation, polymerization and incorporation to complexes of the humic acid. There will be use soils incorporated into different pollutants. 4- We will work with waste waters (alpechins or the green olive debittering effluents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passive trip system, reactor trip, runaway reaction, batch reactor

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Mathematik, Diss., 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La producció de biopolímers (polihidroxialcanoats (PHA) i substàncies polimèriques extracel·lulars (EPS)) a nivell industrial, resulta una nova àrea d’investigació que recull diverses disciplines, entre elles les Ciències Ambientals. Aquest projecte final de carrera amb el títol: “Producció de biopolímers amb cultius bacterians mixtes”, s’ha desenvolupat sota la supervisió de la directora de projecte Dra. María Eugenia Suárez Ojeda del Departament d’Enginyeria Química de la Universitat Autònoma de Barcelona (UAB) i s’ha dut a terme per l’estudiant Jordi Pérez i Forner de la Llicenciatura de Ciències Ambientals, Facultat de Ciències de la UAB, en el Departament d’Enginyeria Química de la mateixa universitat. L’objectiu d’aquest projecte ha estat produir biopolímers simultàniament amb l’eliminació de fòsfor i matèria orgànica en aigües residuals per obtenir un residu final amb un alt valor afegit. Aquests biopolímers reuneixen les característiques necessàries per a poder competir amb els plàstics convencionals i així, reduir l’elevat consum del petroli i la generació de residus no biodegradables. En aquest projecte s’ha dut a terme la posta en marxa d’un reactor discontinu seqüencial (SBR) per a l’acumulació de biopolímers amb cultius bacterians mixtes. Diferents investigadors han estudiat que aquests tipus de cultius bacterians arriben a nivells de fins el 53-97% [Pijuan et al., 2009] de contingut de biopolímers a la biomassa, sometent als microorganismes a diferents situacions d’estrés ja sigui per dèficit de nutrients o per variacions en les fases de feast-famine (festí-fam). Durant el projecte, s’ha realitzat el monitoratge del reactor alimentat amb una aigua sintètica, elaborada en el laboratori, amb les característiques d’un aigua residual provinent de la industria làctica. S’ha sotmès als microorganismes a diferents condicions operacionals, una d’elles amb limitació de fòsfor com a nutrient i una tercera condició amb una variació a les fases feast-famine. D’altra banda, com a segon objectiu, s’ha analitzat el contingut de biopolímers a la biomassa de dos SBRs més, del grup de recerca Bio-GLS del Departament d’Enginyeria Química de la UAB, alimentats amb diferents fonts de carboni, glicerol i àcids grassos de cadena llarga (AGCLL), per observar les influències que té el tipus de substrat en l’acumulació de biopolímers. Els resultats obtinguts en la primera part d’aquest projecte han estat similars als resultats d’altres investigadors [Pijuan et al., 2009; Guerrero et al., 2012]. S’ha determinat que sotmetre als microorganismes a situacions d’estrés té un efecte directe pel que fa a l’acumulació de biopolímers. També s’ha observat com al mateix temps que acumulaven aquests compostos, els microorganismes desenvolupaven la seva tasca de depurar l’aigua residual, obtenint al final del cicle una aigua amb un baix contingut en matèria orgànica i altres contaminants com amoni i fòsfor, en aquest cas. En la segona part del projecte, s’ha observat com el tipus de substrat té un efecte directe pel que fa a l’acumulació de biopolímers i també a l’activitat metabòlica dels microorganismes. Per tant, s’ha conclòs que la producció de biopolímers mitjançant la depuració d’aigües residuals es una via d’investigació molt prometedora pel que fa als resultats obtinguts. Alhora que es tracta un residu, s’obté una producte residual amb un alt valor afegit que pot ser utilitzat per la producció de bioplàstics 100% biodegradables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long-term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real-time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB Nitrospira and Nitrobacter and a 10-fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In bubbly flow simulations, bubble size distribution is an important factor in determination of hydrodynamics. Beside hydrodynamics, it is crucial in the prediction of interfacial area available for mass transfer and in the prediction of reaction rate in gas-liquid reactors such as bubble columns. Solution of population balance equations is a method which can help to model the size distribution by considering continuous bubble coalescence and breakage. Therefore, in Computational Fluid Dynamic simulations it is necessary to couple CFD and Population Balance Model (CFD-PBM) to get reliable distribution. In the current work a CFD-PBM coupled model is implemented as FORTRAN subroutines in ANSYS CFX 10 and it has been tested for bubbly flow. This model uses the idea of Multi Phase Multi Size Group approach which was previously presented by Sha et al. (2006) [18]. The current CFD-PBM coupled method considers inhomogeneous flow field for different bubble size groups in the Eulerian multi-dispersed phase systems. Considering different velocity field for bubbles can give the advantageof more accurate solution of hydrodynamics. It is also an improved method for prediction of bubble size distribution in multiphase flow compared to available commercial packages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The studies of flow phenomena, heat and mass transfer in microchannel reactors are beneficial to estimate and evaluate the ability of microchannel reactors to be operated for a given process reaction such as Fischer-Tropsch synthesis. The flow phenomena, for example, the flow regimes and flow patterns in microchannel reactors for both single phase and multiphase flow are affected by the configuration of the flow channel. The reviews of the previous works about the analysis of related parameters that affect the flow phenomena are shown in this report. In order to predict the phenomena of Fischer-Tropsch synthesis in microchannel reactors, the 3-dimensional computational fluid dynamic simulation with commercial software package FLUENT was done to study the flow phenomena and heat transfer for gas phase Fischer-Tropsch products flow in rectangular microchannel with hydraulic diameter 500 ¿m and length 15 cm. Numerical solution with slip boundary condition was used in the simulation and the flowphenomena and heat transfer were determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results shown in this thesis are based on selected publications of the 2000s decade. The work was carried out in several national and EC funded public research projects and in close cooperation with industrial partners. The main objective of the thesis was to study and quantify the most important phenomena of circulating fluidized bed combustors by developing and applying proper experimental and modelling methods using laboratory scale equipments. An understanding of the phenomena plays an essential role in the development of combustion and emission performance, and the availability and controls of CFB boilers. Experimental procedures to study fuel combustion behaviour under CFB conditions are presented in the thesis. Steady state and dynamic measurements under well controlled conditions were carried out to produce the data needed for the development of high efficiency, utility scale CFB technology. The importance of combustion control and furnace dynamics is emphasized when CFB boilers are scaled up with a once through steam cycle. Qualitative information on fuel combustion characteristics was obtained directly by comparing flue gas oxygen responses during the impulse change experiments with fuel feed. A one-dimensional, time dependent model was developed to analyse the measurement data Emission formation was studied combined with fuel combustion behaviour. Correlations were developed for NO, N2O, CO and char loading, as a function of temperature and oxygen concentration in the bed area. An online method to characterize char loading under CFB conditions was developed and validated with the pilot scale CFB tests. Finally, a new method to control air and fuel feeds in CFB combustion was introduced. The method is based on models and an analysis of the fluctuation of the flue gas oxygen concentration. The effect of high oxygen concentrations on fuel combustion behaviour was also studied to evaluate the potential of CFB boilers to apply oxygenfiring technology to CCS. In future studies, it will be necessary to go through the whole scale up chain from laboratory phenomena devices through pilot scale test rigs to large scale, commercial boilers in order to validate the applicability and scalability of the, results. This thesis shows the chain between the laboratory scale phenomena test rig (bench scale) and the CFB process test rig (pilot). CFB technology has been scaled up successfully from an industrial scale to a utility scale during the last decade. The work shown in the thesis, for its part, has supported the development by producing new detailed information on combustion under CFB conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study it was evaluated the start-up procedures of anaerobic treatment system with three horizontal anaerobic reactors (R1, R2 and R3), installed in series, with volume of 1.2 L each. R1 had sludge blanket, and R2 and R3 had half supporter of bamboo and coconut fiber, respectively. As an affluent, it was synthesized wastewater from mechanical pulping of the coffee fruit by wet method, with a mean value of total chemical oxygen demand (CODtotal) of 16,003 mg L-1. The hydraulic retention time (HRT) in each reactor was 30 h. The volumetric organic loading (VOL) applied in R1 varied from 8.9 to 25.0 g of CODtotal (L d)-1. The mean removal efficiencies of CODtotal varied from 43 to 97% in the treatment system (R1+R2+R3), stabilizing above 80% after 30 days of operation. The mean content of methane in the biogas were of 70 to 76%, the mean volumetric production was 1.7 L CH4 (L reactor d)-1 in the system, and the higher conversions were around at 0.20 L CH4 (g CODremoved)-1 in R1 and R2. The mean values of pH in the effluents ranged from 6.8 to 8.3 and the mean values of total volatile acids remained below 200 mg L-1 in the effluent of R3. The concentrations of total phenols of the affluent ranged from 45 to 278 mg L-1, and the mean removal efficiency was of 52%. The start-up of the anaerobic treatment system occurred after 30 days of operation as a result of inoculation with anaerobic sludge with active microbiota.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study it was evaluated the effects of hydraulic retention time (HRT) and Organic Loading Rate (OLR) on the performance of UASB (Upflow Anaerobic Sludge Blanket) reactors in two stages treating residual waters of swine farming. The system consisted of two UASB reactors in pilot scale, installed in series, with volumes of 908 and 188 L, for the first and second stages (R1 and R2), respectively. The HRT applied in the system of anaerobic treatment in two stages (R1 + R2) was of 19.3, 29.0 and 57.9 h. The OLR applied in the R1 ranged from 5.5 to 40.1 kg CODtotal (m³ d)-1. The average removal efficiencies of chemical oxygen demand (COD) and total suspended solids (TSS) ranged, respectively, from 66.3 to 88.2% and 62.5 to 89.3% in the R1, and from 85.5 to 95.5% and 76.4 to 96.1% in the system (R1 + R2). The volumetric production of methane in the system (R1 + R2) ranged from 0.295 to 0.721 m³CH4 (m³ reactor d)-1. It was found that the OLR applied were not limiting to obtain high efficiencies of CODtotal and TSS removal and methane production. The inclusion of the UASB reactor in the second stage contributed to increase the efficiencies of CODtotal and TSS removal, especially, when the treatment system was submitted to the lowest HRT and the highest OLR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of anaerobic reactors with media support in the treatment of wastewater from the cassava starch industry has emerged as a viable option because it allows the application of high organic loads and a significant reduction of the HDT needed for the treatment. This research aimed at studying the process of biodigestion in two anaerobic reactors with bamboo support, in the treatment of effluent of cassava starch, by evaluating their performance. The two reactors used present the following diameter: length ratio, 1:6 and 1:3. The organic loads applied to the systems were 0.519, 1.156, 1.471, 3.049, 4.347, 4.708 and 5.601g.L-1.d-1. Regarding the efficiency of removal of COD, TS and TVS, no statistically significant differences were obtained between the reactors. The two systems evaluated showed a stable behavior with respect to the VA/TA (volatile acidity/total alkalinity) for all submitted loads. The reactors tended to the maintenance of biogas production as a function of consumed COD for the last three organic loads applied, indicating an ability to withstand higher organic loads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study it was evaluated the efficiency of the treatment of wet-processed coffee wastewater in upflow anaerobic sludge blanket (UASB) reactors in two stages, in bench scale, followed by post-treatment with activated sludge in batch. The first UASB reactor was submitted to an hydraulic retention time (HRT) of 6.2 d and organic loading rates (OLR) of 2.3 and 4.5g CODtotal (L d)-1, and the second UASB reactor to HRT of 3.1 d with OLR of 0.4 and 1.4g CODtotal (L d)-1. The average values of the affluent CODtotal increased from 13,891 to 27,926mg L-1 and the average efficiencies of removal of the CODtotal decreased from 95 to 91%, respectively, in the UASB reactors in two stages. The volumetric methane production increased from 0.274 to 0.323L CH4 (L reactor d)-1 with increment in the OLR. The average concentrations of total phenols in the affluent were of 48 and 163mg L-1, and the removal efficiencies in the UASB reactors in two stages of 92 and 90%, respectively, and increased to 97% with post-treatment. The average values of the removal efficiencies of total nitrogen and phosphorus were of 57 to 80% and 44 to 60%, respectively, in the UASB reactors in two stages and increased to 91 and 84% with the post-treatment.