1000 resultados para Reactor CAREM-25


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A laboratory scale sequencing batch reactor (SBR) operating for enhanced biological phosphorus removal (EBPR) and fed with a mixture of volatile fatty acids (VFAs) showed stable and efficient EBPR capacity over a four-year-period. Phosphorus (P), poly-beta-hydroxyalkanoate (PHA) and glycogen cycling consistent with classical anaerobic/aerobic EBPR were demonstrated with the order of anaerobic VFA uptake being propionate, acetate then butyrate. The SBR was operated without pH control and 63.67+/-13.86 mg P l(-1) was released anaerobically. The P% of the sludge fluctuated between 6% and 10% over the operating period (average of 8.04+/-1.31%). Four main morphological types of floc-forming bacteria were observed in the sludge during one year of in-tensive microscopic observation. Two of them were mainly responsible for anaerobic/aerobic P and PHA transformations. Fluorescence in situ hybridization (FISH) and post-FISH chemical staining for intracellular polyphosphate and PHA were used to determine that 'Candidatus Accumulibacter phosphatis' was the most abundant polyphosphate accumulating organism (PAO), forming large clusters of coccobacilli (1.0-1.5 mum) and comprising 53% of the sludge bacteria. Also by these methods, large coccobacillus-shaped gammaproteobacteria (2.5-3.5 mum) from a recently described novel cluster were glycogen-accumulating organisms (GAOs) comprising 13% of the bacteria. Tetrad-forming organisms (TFOs) consistent with the 'G bacterium' morphotype were alphaproteobacteria , but not Amaricoccus spp., and comprised 25% of all bacteria. According to chemical staining, TFOs were occasionally able to store PHA anaerobically and utilize it aerobically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to evaluate the influence of airflow (0.25, 0.50 and 0.75 L.L-1.min-1) and cycle time (10.45 h, 14.25 h and 17.35 h) on a sequencing batch reactor (SBR) performance in promoting nitrification and denitrification of poultry slaughterhouse wastewater. The operational stages included feeding, aerobic and anoxic reactions, sedimentation and discharge. SBR was operated in a laboratory scale with a working volume of 4 L, keeping 25% of biomass retained inside the reactor as inoculum for the next batch. In the anoxic stage, C: N ratio was maintained between 5 and 6 by adding cassava starch wastewater. A factorial design (22) with five repetitions was designed at the central point to evaluate the influence of cycle time and airflow on total inorganic nitrogen removal (N-NH4++N-NO2-+N-NO3-) and in the whole process (nitrification and denitrification). The highest total inorganic nitrogen removal (93.3%) was observed for airflow of 0.25 L.L-1.min‑1 and a cycle time of 14.25 h. At the end of the experiment, the sludge inside the reactor was characterized by fluorescent in situ hybridization (FISH), indicating the presence of ammonia and nitrite oxidizing bacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucoamylase from Aspergillus Niger was immobilized on montmorillonite clay (K-10) by two procedures, adsorption and covalent binding. The immobilized enzymes were characterized using XRD, surface area measurements and 27Al MAS NMR and the activity of the immobilized enzymes for starch hydrolysis was tested in a fixed bed reactor (FBR). XRD shows that enzyme intercalates into the inter-lamellar space of the clay matrix with a layer expansion up to 2.25 nm. Covalently bound glucoamylase demonstrates a sharp decrease in surface area and pore volume that suggests binding of the enzyme at the pore entrance. NMR studies reveal the involvement of octahedral and tetrahedral Al during immobilization. The performance characteristics in FBR were evaluated. Effectiveness factor (η) for FBR is greater than unity demonstrating that activity of enzyme is more than that of the free enzyme. The Michaelis constant (Km) for covalently bound glucoamylase was lower than that for free enzyme, i.e., the affinity for substrate improves upon immobilization. This shows that diffusional effects are completely eliminated in the FBR. Both immobilized systems showed almost 100% initial activity after 96 h of continuous operation. Covalent binding demonstrated better operational stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A marine Pseudomonas sp BTMS-51, immobilized by Ca-alginate gel entrapment was used for the production of extracellular Lglutaminase under repeated batch process and continuous process employing a packed bed reactor (PBR). Immobilized cells could produce an average of 25 U/ml of enzyme over 20 cycles of repeated batch operation and did not show any decline in production upon reuse. The enzyme yield correlated well with the biomass content in the beads. Continuous production of the enzyme in PBR was studied at different substrate concentrations and dilution rates. In general, the volumetric productivity increased with increased dilution rate and substrate concentrations and the substrate conversion efficiency declined. The PBR operated under conditions giving maximal substrate conversion efficiency gave an average yield of 21.07 U/ml and an average productivity of 13.49 U/ml/h. The system could be operated for 120 h without any decline in productivity

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The enzyme oxalate oxidase, E.C. 1.2.3.4 from Sorghum vulgare seeds (variety BR303) was used to develop a new sensor for oxalate determination without any purification. The sorghum seeds were conditioned in a 0.10 mol I-1 KCl solution. Then, these seeds were put in a stirring bar type enzymic reactor and coupled with an electrode for CO2. This device was introduced into a cell containing 10.0 ml of a 0.10 mol I-1 KCl solution saturated with oxygen. This sensor showed a linear response between 1.0 and 4.0 × 10-3 mol I-1 with a slope of 30 mV per decade of oxalate concentration at 25.0°C. The sensor was stable for one month or 200 determinations. The response time was about 60 s. The Michaelis-Menten constant determined for this enzyme was 1.5 × 10-3 mol I-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new methodology for soluble oxalic acid determination in grass samples was developed using a two enzyme reactor in an FIA system. The reactor consisted of 3 U of oxalate oxidase and 100 U of peroxidase immobilized on Sorghum vulgare seeds activated with glutaraldehyde. The carbon dioxide was monitored spectrophotometrically, after reacting with an acid-base indicator (Bromocresol Purple) after it permeated through a PTFE membrane. A linear response range was observed between 0.25 and 1.00mmol l-1 of oxalic acid; the data was fit by the equation A=-0.8(±1.5)+ 57.2(±2.5)[oxalate], with a correlation coefficient of 0.9971 and a relative standard deviation of 2% for n=5. The variance for a 0.25 mmol l-1 oxalic acid standard solution was lower than 4% for 11 measurements. The FIA system allows analysis of 20 samples per hour without prior treatment. The proposed method showed a good correlation with that of the Sigma Kit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen peroxide is a powerful oxidant that finds application in several areas, but most particularly in the treatment of industrial wastewaters. The aim of the present study was to investigate the effects of applied potential and electrolyte flow conditions on the in situ generation of hydrogen peroxide in an electrochemical flow-by reactor with a gas diffusion electrode (GDE). The electrolyses were performed in an aqueous acidic medium using a GDE constructed with conductive black graphite and polytetrafluoroethylene (80:20 w/w). Under laminar flow conditions (flow rate = 50 L/h), hydrogen peroxide was formed in a maximum yield of 414 mg/L after 2 h at -2.25 V vs Pt //Ag/AgCl (global rate constant = 3.1 mg/(L min); energy consumption = 22.1 kWh/kg). Under turbulent flow (300 L/h), the maximum yield obtained was 294 mg/L after 2 h at -1.75 V vs Pt//Ag/AgCl (global rate constant = 2.5 mg/ (L min); energy consumption = 30.1 kWh/kg).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of substrate (glucose) concentration on the stability and yield of a continuous fermentative process that produces hydrogen was studied. Four anaerobic fluidized bed reactors (AFBRs) were operated with a hydraulic retention time (HRT) from 1 to 8 h and an influent glucose concentration from 2 to 25 gL(-1). The reactors were inoculated with thermally pre-treated anaerobic sludge and operated at a temperature of 30 degrees C with an influent pH around 5.5 and an effluent pH of about 3.5. The AFBRs with a HRT of 2 h and a feed strength of 2, 4, and 10 gL(-1) showed satisfactory H-2 production performance, but the reactor fed with 25 gL(-1) of glucose did not. The highest hydrogen yield value was obtained in the reactor with a glucose concentration of 2 gL(-1) when it was operated at a HRT of 2 h. The maximum hydrogen production rate value was achieved in the reactor with a HRT of 1 h and a feed strength of 10 gL(-1). The AFBRs operated with glucose concentrations of 2 and 4 gL(-1) produced greater amounts of acetic and butyric acids, while AFBRs with higher glucose concentrations produced a greater amount of solvents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this thesis is the power transient analysis concerning experimental devices placed within the reflector of Jules Horowitz Reactor (JHR). Since JHR material testing facility is designed to achieve 100 MW core thermal power, a large reflector hosts fissile material samples that are irradiated up to total relevant power of 3 MW. MADISON devices are expected to attain 130 kW, conversely ADELINE nominal power is of some 60 kW. In addition, MOLFI test samples are envisaged to reach 360 kW for what concerns LEU configuration and up to 650 kW according to HEU frame. Safety issues concern shutdown transients and need particular verifications about thermal power decreasing of these fissile samples with respect to core kinetics, as far as single device reactivity determination is concerned. Calculation model is conceived and applied in order to properly account for different nuclear heating processes and relative time-dependent features of device transients. An innovative methodology is carried out since flux shape modification during control rod insertions is investigated regarding the impact on device power through core-reflector coupling coefficients. In fact, previous methods considering only nominal core-reflector parameters are then improved. Moreover, delayed emissions effect is evaluated about spatial impact on devices of a diffuse in-core delayed neutron source. Delayed gammas transport related to fission products concentration is taken into account through evolution calculations of different fuel compositions in equilibrium cycle. Provided accurate device reactivity control, power transients are then computed for every sample according to envisaged shutdown procedures. Results obtained in this study are aimed at design feedback and reactor management optimization by JHR project team. Moreover, Safety Report is intended to utilize present analysis for improved device characterization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polysilicon cost impacts significantly on the photovoltaics (PV) cost and on the energy payback time. Nowadays, the besetting production process is the so called Siemens process, polysilicon deposition by chemical vapor deposition (CVD) from Trichlorosilane. Polysilicon purification level for PV is to a certain extent less demanding that for microelectronics. At the Instituto de Energía Solar (IES) research on this subject is performed through a Siemens process-type laboratory reactor. Through the laboratory CVD prototype at the IES laboratories, valuable information about the phenomena involved in the polysilicon deposition process and the operating conditions is obtained. Polysilicon deposition by CVD is a complex process due to the big number of parameters involved. A study on the influence of temperature and inlet gas mixture composition on the polysilicon deposition growth rate, based on experimental experience, is shown. Moreover, CVD process accounts for the largest contribution to the energy consumption of the polysilicon production. In addition, radiation phenomenon is the major responsible for low energetic efficiency of the whole process. This work presents a model of radiation heat loss, and the theoretical calculations are confirmed experimentally through a prototype reactor at our disposal, yielding a valuable know-how for energy consumption reduction at industrial Siemens reactors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La nitrificación-desnitrificación es el proceso biológico tradicional para la remoción de nitrógeno de las aguas residuales (Ruiz G. et al., 2006a), siendo fundamental ya que contribuye a controlar la eutroficación de los cuerpos receptores. Debido al deterioro que sobre la disponibilidad de los recursos han ejercido las actividades antropogénicas, es necesario orientar el tratamiento de las aguas residuales hacia tecnologías que ofrezcan el mayor grado de sustentabilidad, planteando innovaciones en el tratamiento. El presente proyecto de tesis doctoral versa sobre el estudio de la influencia de la relación C/N en la desnitrificación y metanogénesis de aguas residuales urbanas en un reactor anaeróbico de lecho fluidizado inverso (RLFI). Previamente a la realización de las pruebas experimentales de variación de la relación C/N, se llevó a cabo la etapa de arranque del RLFI la cual se inició en modo batch, favoreciendo la formación y adhesión de biopelícula al medio de soporte utilizado (Extendosphere). Después, sobrevino la operación en modo continuo desde una carga volumétrica aplicada (CVA) de 0.5 g DQOs/L⋅d hasta alcanzar 4 g DQOs/L⋅d, carga volumétrica a la cual se logró la plena estabilización del reactor, siendo la alta variabilidad de la concentración de DQOs en el agua residual urbana de alimentación, la principal problemática que ocasionó retrasos en la estabilidad del reactor. A una CVA de 4 g DQOs/L⋅d en estado estacionario, el valor mínimo de eficiencia de remoción de DQOs fue del 32.36% y el máximo de 66.99%. En estas condiciones el porcentaje de metano presente en el biogás producido tuvo un valor medio de 85.57 ± 2.93%, siendo un valor alto comparado con otros porcentajes de metano encontrados en la digestión anaerobia de aguas residuales urbanas. El YCH4 tuvo un valor medio de 0.316 ± 0.110 LCH4/g DQOrem⋅día. Los porcentajes de metanización variaron en el rango de 20.50 a 100%, registrándose un valor medio de 73.42 ± 25.63%. La considerable variabilidad en el porcentaje de metanización se debió principalmente a que se presentaron eventos de lavado de soporte colonizado, lo cual propició que las actividades metabólicas fueran orientadas hacia formación de biopelícula (anabolismo) en vez de estar dirigidas hacia producción de metano (catabolismo). En relación a los ensayos con variación de la relación C/N, se manejaron relaciones DQOs/N-NO3 en el rango de 1.65 a 21.1 g DQOs/g N-NO3. La tasa de remoción anaerobia de DQOs se incrementó con la concentración de sustrato en una relación casi lineal, ajustándose a una cinética de primer orden, lo que regularmente se presenta a concentraciones bajas de sustrato. La eficiencia del proceso de desnitrificación fue por lo regular alta, incrementándose ligeramente con la concentración de DQOs en el influente, con valores en el rango de 73.8 a 99.1%. Por otra parte, la tasa de remoción por metanogénesis se incrementó con la concentración relativa de sustrato (es decir, a mayores relaciones DQOs/N-NO3), siendo más sensitiva la metanogénesis a la concentración relativa de sustrato que la desnitrificación. Conforme aumentó la relación DQOs/N-NO3, la desnitrificación, de ser la ruta metabólica principal de utilización de la materia orgánica (comparada con la metanización), empezó a combinarse con la metanización. De manera evidente, a las relaciones DQOs/N-NO3 probadas, se manifestaron más las actividades desnitrificantes, quedando reflejadas por el alto porcentaje de utilización de la DQOs removida hacia la desnitrificación. La relación experimental DQOs/N-NO3 a la cual se pudiera haber cumplido con el requerimiento de materia orgánica (en términos de DQOs) para la desnitrificación de nitratos en las aguas residuales urbanas tratadas resultó aproximadamente ser igual a 7.1 g DQOs/g N-NO3. A una CVA de 4 g DQOs/L⋅d, se obtuvo un diámetro promedio máximo de soporte colonizado igual a 266.106 ± 69.279 μm aunque, hay que indicarlo, se presentaron fluctuaciones, las cuales se reflejaron también en el espesor de la biopelícula, el cual tuvo un valor máximo de 50.099 μm y un valor promedio de 37.294 ± 11.199 μm. Estas fluctuaciones pudieron deberse a la existencia de corrientes preferenciales dentro del reactor, las cuales no permitieron un acceso equitativo del sustrato a todo el lecho. Nitrification-denitrification is the traditional biological process for nitrogen removal from wastewaters (Ruiz G. et al., 2006a), being fundamental since it contributes to control the eutrophication of the receiving waters. Due to the deterioration that on the availability of the aquatic resources the anthropogenic activities have exerted, it is necessary to orient the treatment of wastewaters towards technologies that offer the greater degree of sustainability, raising innovations in the treatment. This work studied the influence of C/N ratio on denitrification and methanogenesis of urban wastewaters in an inverse fluidized bed reactor (IFBR). Previously to the accomplishment of the experimental tests with variation of C/N ratio, the start up of the IFBR was carried out in batch way, encouraging the formation and adhesion of biofilm to Extendosphere, which it was used as support. The operation in continuous way carried out from an organic loading rate (OLR) of 0.5 g CODs/L ∙ d to 4 g CODs/L ∙ d, when the steady-state was reached. The high variability of the CODs of the urban wastewaters caused delays in the stability of the reactor. Once stationary state was reached, the removal efficiency of CODs ranged from 32.36 to 66.99% to 4 g CODs/L ∙ d. In these conditions the percentage of methane in produced biogas had an average value of 85.57 ± 2.93%, being a high value compared with other studies treating anaerobically urban wastewaters. The YCH4 had an average value of 0.316 ± 0.110 LCH4/g CODrem ∙ d. The percentage of methanisation ranged from 20.50 to 100%, with an average value of 73.42 ± 25.63%. The considerable variability in the methanisation percentage occurred mainly due events of wash-out of colonized support, which caused that the metabolic activities were oriented towards formation of biofilm (anabolism) instead of methane production (catabolism). Concerning the tests with variation of C/N ratio, CODs/NO3-N ratios from 1.65 to 21.1 g CODs/g NO3-N were proved. The CODs anaerobic removal rate increased with the substrate concentration in an almost linear relation, adjusting to a kinetic of first order, which regularly appears to low concentrations of substrate. Efficiency of the denitrification process was regularly high, and it increased slightly with the CODs concentration in the influent, ranging from 73.8 to 99.1%. On the other hand, the CODs removal rate by methanogenesis increased with the substrate relative concentration (e.g., to greater CODs/NO3-N ratios), being more sensitive the methanogenesis to the substrate relative concentration that the denitrification. When the CODs/NO3-N ratio increased, the denitrification, of being the main metabolic route of use of the organic matter (compared with the methanogenesis), began to be combined with the methanogenesis. Definitively, to the proven CODs/NO3-N ratios the denitrification processes were more pronounced, being reflected by the high percentage of use of the removed CODs towards denitrification. The experimental CODs/NO3-N ratio to which it was possible to have been fulfilled the requirement of organic matter (in terms of CODs) for the denitrification of nitrates in urban wastewaters turned out to be approximately 7.1 g CODs/g NO3-N. It was obtained a maximum average diameter of colonized support of 266.106 ± 69.279 μm to 4 g CODs/L ∙ d, although it is necessary to indicate that appeared fluctuations in the thickness of biofilm, which had a maximum value of 50.099 μm and an average value of 37.294 ± 11.199 μm. These fluctuations could be due to the existence of preferential currents within the reactor, which did not allow an equitable access of the substrate to all the bed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study shows a first approach to the simulation of the remote handling oper- ation which takes into account the thermal and flexible behavior of the blanket segments and its implications on the remote handling equipment, in order to validate and improve its design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polysilicon production costs contribute approximately to 25-33% of the overall cost of the solar panels and a similar fraction of the total energy invested in their fabrication. Understanding the energy losses and the behaviour of process temperature is an essential requirement as one moves forward to design and build large scale polysilicon manufacturing plants. In this paper we present thermal models for two processes for poly production, viz., the Siemens process using trichlorosilane (TCS) as precursor and the fluid bed process using silane (monosilane, MS).We validate the models with some experimental measurements on prototype laboratory reactors relating the temperature profiles to product quality. A model sensitivity analysis is also performed, and the efects of some key parameters such as reactor wall emissivity, gas distributor temperature, etc., on temperature distribution and product quality are examined. The information presented in this paper is useful for further understanding of the strengths and weaknesses of both deposition technologies, and will help in optimal temperature profiling of these systems aiming at lowering production costs without compromising the solar cell quality.