992 resultados para Rayleigh wave


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The central-south Tibet is a part of the products of the continental plate collision between Eurasia and India. To study the deep structure of the study area is significant for understanding the dynamics of the continental-continental collision. A 3-D density model matched well with the observations in the central-south Tibet was proposed in this study. In addition, this study has also used numerical simulation method to prove that Quasi-Love (QL) wave is deduced by anisotropy variation but not by lateral heterogeneity. Meanwhile, anisotropy variation in the upper mantle of the Qiangtang terrane and Lhasa terrane is detected by the QL waves observed in recorded seismograms. Based on the gravity modeling, some results are summarized as follows: 1) Under the constrain of geometrical structure detected by seismic data, a 3-D density model and Moho interface are proposed by gravity inversion of the central-south Tibet. 2) The fact that the lower crustal densities are smaller than 3.2 g/cm3, suggests absence of eclogite or partial eclogitization due to delamination under the central-south Tibet. 3) Seismicity will be strong or weak in the most negative Bouguer gravity anomaly. So there is no a certain relationship between seismicity and Bouguer gravity anomaly. 4) Crustal composition are determined after temperature-pressure calibration of seismic P wave velocity. The composition of lower crust might be one or a mixture of: 1. amphibolite and greenschist facies basalt beneath the Qiangtang terrane; 2. gabbro-norite-troctolite and mafic granulite beneath the Lhasa terrane. Because the composition of the middle crust cannot be well constrained by the above data set, the data set published by Rudnick & Fountain (1995) is used for comparison. It indicated the composition of the middle crust is granulite facies and might be pelitic gneisses.Granulite facies used to be interpreted as residues of partial melting, which coincidences with the previous study on partial melting middle crust. Amphibolite facies are thought to be produced after delamination, when underplating works in the rebound of the lower crust and lithospheric mantle. From the seismology study, I have made several followed conclusions: 1) Through the numerical simulation experiment of surface wave propagating in heterogeneity media, we can find that amplitude and polarization of surface wave only change a little when considering heterogeneity. Furthermore, it is proved that QL waves, generated by surface wave scattering, are caused by lateral variation of anisotropy but not by heterogeneity. 2) QL waves are utilized to determine the variation of uppermost mantle anisotropy of the Tibetan plateau. QL waves are identified from the seismograms of the selected paths recorded by the CAD station. The location of azimuth anisotropy gradient is estimated from the group velocities of Rayleigh wave, Love wave and QL wave. It suggests that south-north lateral variation of azimuthal anisotropy locates in Tanggula mountain, and east-west lateral variation in the north of Gandese mountain with 85°E longitude and near the Jinsha river fault with 85°E longitude.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surface wave propagation in the anisotropic media and S-wave splitting in China mainland are focused in this M.S. dissertation. We firstly introduced Anderson parameters in the research of surface wave propagation in the anisotropic media were deduced, respectively. By applying the given initial model to the forward calculation of Love wave, we compared dispersion curves of Love wave in the anisotropic media with the one in the isotropic media. the results show that, although the two kind of results are similar with each other, the effect of anisotropy can not be neglected. Furthermore, the variation of anisotropy factors will result in the variation of dispersion curves, especially for high-mode one. The method of grid dispersion inversion was then described for further tectonic inversion. We also deduced inversion equation on the condition that the layered media is anisotropic, and calculated the phase-velocity partial derivatives with respect to the model parameters, P- and S-wave velocities, density, anisotropic parameters for Rayleigh wave and Love wave. Having analyzed the results of phase-velocity partial derivatives, we concluded that the derivatives within each period decreased with the depth increasing, the phase-velocity of surface wave is sensitive to the S-wave velocities and anisotropic factors and is not sensitive to the densities of layers. Dispersion data of Love wave from the events occurred during the period from 1991 to 1998 around the Qinghai and Tibet Plateau, which magnitudes are more than 5.5, have been used in the grid dispersion inversion. Those data have been preprocessed and analyzed in the F-T domain. Then the results of 1°*1° grid dispersion inversion, the pure path dispersion data, in the area of Qianghai and Tibet Plateau were obtained. As an example, dispersion data have been input for the tectonic inversion in the anisotropic media, and the results of anisotropic factors under the region of Qianghai and Tibet Plateau were initially discussed. As for the other part of this dissertation. We first introduced the phenomena of S-wave splitting and the methods for calculation the splitting parameters. Then, We applied Butterworth band-pass filter to S-wave data recorded at 8 stations in China mainland, and analyzed S-wave splitting at different frequency bands. The results show the delay time and the fast polarization directions of S-wave splitting depend upon the frequency bands. There is an absence of S-wave splitting at the station of Wulumuqi (WMQ) for the band of 0.1-0.2Hz. With the frequency band broaden, the delay time of S-wave splitting decreases at the stations of Beijing (BJI), Enshi (ENH), Kunming (KMI) and Mudanjiang (MDJ); the fast polarization direction at Enshi (ENH) changes from westward to eastward, and eastward to westward at Hailaer (HIA). The variations of delay time with bands at Lanzhou (LZH) and qiongzhong (QIZ) are similar, and there is a coherent trend of fast polarization directions at BJI, KMI and MDJ respectively. Initial interpretations to the results of frequency band-dependence of S-wave splitting were also presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular dynamics has been employed to model the fracture of a twodimensional triangular atomic lattice. The N-body Sutton-Chen potential developed for fcc metals and its extended version (Rafii-Tabar and Sutton) for fcc random binary alloys were used for the interatomic interactions. It is shown that at low temperatures cleavage fractures can occur in both an elemental metal and an alloy. At elevated temperatures the nucleation of dislocations is shown to cause a brittle-to-ductile transition. For the brittle crack propagation in the elemental metal, crack propagation speeds have been computed for different stress rates, and a crack instability found to exist as the speed reaches a critical value of about 32% of the Rayleigh wave speed. For the random alloy, we find that the dislocation movement can be affected by the distorted lattice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular dynamics has been employed to model the fracture of a two dimensional triangular atomic lattice. The N-body Sutton-Chen potential developed for fcc metals and its extended version (Rafii-Tabar and Sutton) for fcc random binary alloys were used for the interatomic interactions. It is shown that at low temperatures cleavage fractures can occur in both an elemental metal and an alloy. At elevated temperatures the nucleation of dislocations is shown to cause a brittle-to-ductile transition. For the brittle crack propagation in the elemental metal, crack propagation speeds have been computed for different stress rates, and a crack instability found to exist as the speed reaches a critical value of about 32% of the Rayleigh wave speed. For the random alloy, we find that the dislocation movement can be affected by the distorted lattice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The UK’s transportation network is supported by critical geotechnical assets (cuttings/embankments/dams) that require sustainable, cost-effective management, while maintaining an appropriate service level to meet social, economic, and environmental needs. Recent effects of extreme weather on these geotechnical assets have highlighted their vulnerability to climate variations. We have assessed the potential of surface wave data to portray the climate-related variations in mechanical properties of a clay-filled railway embankment. Seismic data were acquired bimonthly from July 2013 to November 2014 along the crest of a heritage railway embankment in southwest England. For each acquisition, the collected data were first processed to obtain a set of Rayleigh-wave dispersion and attenuation curves, referenced to the same spatial locations. These data were then analyzed to identify a coherent trend in their spatial and temporal variability. The relevance of the observed temporal variations was also verified with respect to the experimental data uncertainties. Finally, the surface wave dispersion data sets were inverted to reconstruct a time-lapse model of S-wave velocity for the embankment structure, using a least-squares laterally constrained inversion scheme. A key point of the inversion process was constituted by the estimation of a suitable initial model and the selection of adequate levels of spatial regularization. The initial model and the strength of spatial smoothing were then kept constant throughout the processing of all available data sets to ensure homogeneity of the procedure and comparability among the obtained VS sections. A continuous and coherent temporal pattern of surface wave data, and consequently of the reconstructed VS models, was identified. This pattern is related to the seasonal distribution of precipitation and soil water content measured on site.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We estimate crustal structure and thickness of South America north of roughly 40 degrees S. To this end, we analyzed receiver functions from 20 relatively new temporary broadband seismic stations deployed across eastern Brazil. In the analysis we include teleseismic and some regional events, particularly for stations that recorded few suitable earthquakes. We first estimate crustal thickness and average Poisson`s ratio using two different stacking methods. We then combine the new crustal constraints with results from previous receiver function studies. To interpolate the crustal thickness between the station locations, we jointly invert these Moho point constraints, Rayleigh wave group velocities, and regional S and Rayleigh waveforms for a continuous map of Moho depth. The new tomographic Moho map suggests that Moho depth and Moho relief vary slightly with age within the Precambrian crust. Whether or not a positive correlation between crustal thickness and geologic age is derived from the pre-interpolation point constraints depends strongly on the selected subset of receiver functions. This implies that using only pre-interpolation point constraints (receiver functions) inadequately samples the spatial variation in geologic age. The new Moho map also reveals an anomalously deep Moho beneath the oldest core of the Amazonian Craton.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among the many types of noise observed in seismic land acquisition there is one produced by surface waves called Ground Roll that is a particular type of Rayleigh wave which characteristics are high amplitude, low frequency and low velocity (generating a cone with high dip). Ground roll contaminates the relevant signals and can mask the relevant information, carried by waves scattered in deeper regions of the geological layers. In this thesis, we will present a method that attenuates the ground roll. The technique consists in to decompose the seismogram in a basis of curvelet functions that are localized in time, in frequency, and also, incorporate an angular orientation. These characteristics allow to construct a curvelet filter that takes in consideration the localization of denoise in scales, times and angles in the seismogram. The method was tested with real data and the results were very good

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surface wave tomography, using the fundamental Rayleigh wave velocities and those of higher modes between 1 and 4 and periods between 50 and 160 s, is used to image structures with a horizontal resolution of ~250 km and a vertical resolution of ~50 km to depths of ~300 km in the mantle. A new model, PM_v2_2012, obtained from 3×10**6 seismograms, agrees well with earlier lower resolution models. It is combined with temperature estimates from oceanic plate models and with pressure and temperature estimates from the mineral compositions of garnet peridotite nodules to generate a number of estimates of SV(P,T) based on geophysical and petrological observations alone. These are then used to estimate the unrelaxed shear modulus and its derivatives with respect to pressure and temperature, which agree reasonably with values from laboratory experiments. At high temperatures relaxation occurs, causing the shear wave velocity to depend on frequency. This behaviour is parameterised using a viscosity to obtain a Maxwell relaxation time. The relaxation behaviour is described using a dimensionless frequency, which depends on an activation energy E and volume Va. The values of E and Va obtained from the geophysical models agree with those from laboratory experiments on high temperature creep. The resulting expressions are then used to determine the lithospheric thickness from the shear wave velocity variations. The resolution is improved by about a factor of two with respect to earlier models, and clearly resolves the thick lithosphere beneath active intracontinental belts that are now being shortened. The same expressions allow the three dimensional variations of the shear wave attenuation and viscosity to be estimated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to evaluate ground shaking characteristics due to surface soil layers in the urban area of Port-au-Prince, short-period ambient noise observation has been performed approximately in a 500x500m grid. The HVSR method was applied to this set of 36 ambient noise measurement points to determine a distribution map of soil predominant periods. This map reveals a general increasing trend in the period values, from the Miocene conglomerates in the northern and southern parts of the town to the central and western zones formed of Pleistocene and Holocene alluvial deposits respectively, where the shallow geological materials that cover the basement increase in thickness. Shorter predominant periods (less than 0.3 s) were found in mountainous and neighbouring zones, where the thickness of sediments is smaller whereas longer periods (greater than 0.5 s) appear in Holocene alluvial fans, where the thickness of sediments is larger. The shallow shear-wave velocity structure have been estimated by means of inversion of Rayleigh wave dispersion data obtained from vertical-component array records of ambient noise. The measurements were carried out at one open space located in Holocene alluvial deposits, using 3 regular pentagonal arrays with 5, 10 and 20m respectively. Reliable dispersion curves were retrieved for frequencies between 4.0 and 14 Hz, with phase velocity values ranging from 420m/s down to 270 m/s. Finally, the average shear-wave velocity of the upper 30 m (VS30) was inverted for characterization of this geological unit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ambient seismic noise has traditionally been considered as an unwanted perturbation in seismic data acquisition that "contaminates" the clean recording of earthquakes. Over the last decade, however, it has been demonstrated that consistent information about the subsurface structure can be extracted from cross-correlation of ambient seismic noise. In this context, the rules are reversed: the ambient seismic noise becomes the desired seismic signal, while earthquakes become the unwanted perturbation that needs to be removed. At periods lower than 30 s, the spectrum of ambient seismic noise is dominated by microseism, which originates from distant atmospheric perturbations over the oceans. The microsseism is the most continuous seismic signal and can be classified as primary – when observed in the range 10-20 s – and secondary – when observed in the range 5-10 s. The Green‘s function of the propagating medium between two receivers (seismic stations) can be reconstructed by cross-correlating seismic noise simultaneously recorded at the receivers. The reconstruction of the Green‘s function is generally proportional to the surface-wave portion of the seismic wavefield, as microsseismic energy travels mostly as surface-waves. In this work, 194 Green‘s functions obtained from stacking of one month of daily cross-correlations of ambient seismic noise recorded in the vertical component of several pairs of broadband seismic stations in Northeast Brazil are presented. The daily cross-correlations were stacked using a timefrequency, phase-weighted scheme that enhances weak coherent signals by reducing incoherent noise. The cross-correlations show that, as expected, the emerged signal is dominated by Rayleigh waves, with dispersion velocities being reliably measured for periods ranging between 5 and 20 s. Both permanent stations from a monitoring seismic network and temporary stations from past passive experiments in the region are considered, resulting in a combined network of 33 stations separated by distances between 60 and 1311 km, approximately. The Rayleigh-wave, dispersion velocity measurements are then used to develop tomographic images of group velocity variation for the Borborema Province of Northeast Brazil. The tomographic maps allow to satisfactorily map buried structural features in the region. At short periods (~5 s) the images reflect shallow crustal structure, clearly delineating intra-continental and marginal sedimentary basins, as well as portions of important shear zones traversing the Borborema Province. At longer periods (10 – 20 s) the images are sensitive to deeper structure in the upper crust, and most of the shallower anomalies fade away. Interestingly, some of them do persist. The deep anomalies do not correlate with either the location of Cenozoic volcanism and uplift - which marked the evolution of the Borborema Province in the Cenozoic - or available maps of surface heat-flow, and the origin of the deep anomalies remains enigmatic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present the first image of the Madeira upper crustal structure, using ambient seismic noise tomography. 16 months of ambient noise, recorded in a dense network of 26 seismometers deployed across Madeira, allowed reconstructing Rayleigh wave Green's functions between receivers. Dispersion analysis was performed in the short period band from 1.0 to 4.0 s. Group velocity measurements were regionalized to obtain 2D tomographic images, with a lateral resolution of 2.0 km in central Madeira. Afterwards, the dispersion curves, extracted from each cell of the 2D group velocity maps, were inverted as a function of depth to obtain a 3D shear wave velocity model of the upper crust, from the surface to a depth of 2.0 km. The obtained 3D velocity model reveals features throughout the island that correlates well with surface geology and island evolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among the many types of noise observed in seismic land acquisition there is one produced by surface waves called Ground Roll that is a particular type of Rayleigh wave which characteristics are high amplitude, low frequency and low velocity (generating a cone with high dip). Ground roll contaminates the relevant signals and can mask the relevant information, carried by waves scattered in deeper regions of the geological layers. In this thesis, we will present a method that attenuates the ground roll. The technique consists in to decompose the seismogram in a basis of curvelet functions that are localized in time, in frequency, and also, incorporate an angular orientation. These characteristics allow to construct a curvelet filter that takes in consideration the localization of denoise in scales, times and angles in the seismogram. The method was tested with real data and the results were very good

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Kelvin Helmholtz (KH) problem, with zero stratification, is examined as a limiting case of the Rayleigh model of a single shear layer whose width tends to zero. The transition of the Rayleigh modal dispersion relation to the KH one, as well as the disappearance of the supermodal transient growth in the KH limit, are both rationalized from the counterpropagating Rossby wave perspective.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As is well known, when monochromatic light scattered by a liquid is examined under high resolution it exhibits a fine structure: an undisplaced central line and two lines on either side with wavelengths slightly different from that of the incident light. The appearance of the displaced components was first predicted by Brillouin1. On the basis of his theory, the observed displacements of frequency are regarded as a Doppler effect arising from the reflexion of the light wave by the progressive sound waves of thermal origin in the scattering medium. The frequency shift of the so-called Brillouin components is given by the formula where nu and c are the velocities of sound and light in the medium and theta is the angle of scattering. That the effect contemplated by Brillouin does arise in liquids and crystals is now a well-established experimental fact.