817 resultados para Range management.
Resumo:
Rainfall variability is a major challenge to sustainable grazing management in northern Australia, with management often complicated further by large, spatially-heterogeneous paddocks. This paper presents the latest grazing research and associated bio-economic modelling from northern Australia and assesses the extent to which current recommendations to manage for these issues are supported. Overall, stocking around the safe long-term carrying capacity will maintain land condition and maximise long-term profitability. However, stocking rates should be varied in a risk-averse manner as pasture availability varies between years. Periodic wet-season spelling is also essential to maintain pasture condition and allow recovery of overgrazed areas. Uneven grazing distributions can be partially managed through fencing, providing additional water-points and in some cases patch-burning, although the economics of infrastructure development are extremely context-dependent. Overall, complex multi-paddock grazing systems do not appear justified in northern Australia. Provided the key management principles outlined above are applied in an active, adaptive manner, acceptable economic and environmental outcomes will be achieved irrespective of the grazing system applied.
Resumo:
Parthenium weed (Parthenium hysterophorus L.) is believed to reduce the above- and below-ground plant species diversity and the above-ground productivity in several ecosystems. We quantified the impact of this invasive weed upon species diversity in an Australian grassland and assessed the resulting shifts in plant community composition following management using two traditional approaches. A baseline plant community survey, prior to management, showed that the above-ground community was dominated by P. hysterophorus, stoloniferous grasses, with a further high frequency of species from Malvaceae, Chenopodiaceae and Amaranthaceae. In heavily invaded areas, P. hysterophorus abundance and biomass was found to negatively correlate with species diversity and native species abundance. Digitaria didactyla Willd. was present in high abundance when P. hysterophorus was not, with these two species, contributing most to the dissimilarity seen between areas. The application of selective broad leaf weed herbicides significantly reduced P. hysterophorus biomass under ungrazed conditions, but this management did not yet result in an increase in species diversity. In the above-ground community, P. hysterophorus was partly replaced by the introduced grass species Cynodon dactylon L. (Pers.) 1 year after management began, increasing the above-ground forage biomass production, while D. didactyla replaced P. hysterophorus in the below-ground community. This improvement in forage availability continued to strengthen over the time of the study resulting in a total increase of 80% after 2 years in the ungrazed treatment, demonstrating the stress that grazing was imposing upon this grassland-based agro-ecosystem and showing that it is necessary to remove grazing to obtain the best results from the chemical management approach.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"September 1989"--P. [18].
Resumo:
Cover title.
Resumo:
Includes bibliographical references (p. 47-48).
Resumo:
Contribution from Soil Conservation Service.
Resumo:
Replaces Effect of grazing intensity upon vegetation and cattle gains on ponderosa pine-bunchgrass ranges of the Front Range of Colorado, by W. M. Johnson, issued as U.S. Dept. of Agriculture Circular no. 929.
Resumo:
Sponsored by the Branch of Range and Wildlife Habitat Ecology and Management Research, U.S. Forest Service.
Resumo:
"BLM-WY-ES-84-017-4332"--Vol. [1], p. [3] of cover.
Resumo:
Two maps on 2 folded plates in pocket of Draft.
Resumo:
Includes index.
Resumo:
"October 2001."