991 resultados para Random-variables
Resumo:
In the article the author considers and analyzes operations and functions on risk variables. She takes into account the following variables: the sum of risk variables, its product, multiplication by a constant, division, maximum, minimum and median of a sum of random variables. She receives the formulas for probability distribution and basic distribution parameters. She conducts the analysis for dependent and independent random variables. She propose the examples of the situations in the economy and production management of risk modelled by this operations. The analysis is conducted with the way of mathematical proving. Some of the formulas presented are taken from the literature but others are the permanent results of the author.
Resumo:
Prediction of random effects is an important problem with expanding applications. In the simplest context, the problem corresponds to prediction of the latent value (the mean) of a realized cluster selected via two-stage sampling. Recently, Stanek and Singer [Predicting random effects from finite population clustered samples with response error. J. Amer. Statist. Assoc. 99, 119-130] developed best linear unbiased predictors (BLUP) under a finite population mixed model that outperform BLUPs from mixed models and superpopulation models. Their setup, however, does not allow for unequally sized clusters. To overcome this drawback, we consider an expanded finite population mixed model based on a larger set of random variables that span a higher dimensional space than those typically applied to such problems. We show that BLUPs for linear combinations of the realized cluster means derived under such a model have considerably smaller mean squared error (MSE) than those obtained from mixed models, superpopulation models, and finite population mixed models. We motivate our general approach by an example developed for two-stage cluster sampling and show that it faithfully captures the stochastic aspects of sampling in the problem. We also consider simulation studies to illustrate the increased accuracy of the BLUP obtained under the expanded finite population mixed model. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Polynomial Chaos Expansion (PCE) is widely recognized as a flexible tool to represent different types of random variables/processes. However, applications to real, experimental data are still limited. In this article, PCE is used to represent the random time-evolution of metal corrosion growth in marine environments. The PCE coefficients are determined in order to represent data of 45 corrosion coupons tested by Jeffrey and Melchers (2001) at Taylors Beach, Australia. Accuracy of the representation and possibilities for model extrapolation are considered in the study. Results show that reasonably accurate smooth representations of the corrosion process can be obtained. The representation is not better because a smooth model is used to represent non-smooth corrosion data. Random corrosion leads to time-variant reliability problems, due to resistance degradation over time. Time variant reliability problems are not trivial to solve, especially under random process loading. Two example problems are solved herein, showing how the developed PCE representations can be employed in reliability analysis of structures subject to marine corrosion. Monte Carlo Simulation is used to solve the resulting time-variant reliability problems. However, an accurate and more computationally efficient solution is also presented.
Resumo:
Monte Carlo techniques, which require the generation of samples from some target density, are often the only alternative for performing Bayesian inference. Two classic sampling techniques to draw independent samples are the ratio of uniforms (RoU) and rejection sampling (RS). An efficient sampling algorithm is proposed combining the RoU and polar RS (i.e. RS inside a sector of a circle using polar coordinates). Its efficiency is shown in drawing samples from truncated Cauchy and Gaussian random variables, which have many important applications in signal processing and communications. RESUMEN. Método eficiente para generar algunas variables aleatorias de uso común en procesado de señal y comunicaciones (por ejemplo, Gaussianas o Cauchy truncadas) mediante la combinación de dos técnicas: "ratio of uniforms" y "rejection sampling".
Resumo:
"July 1976."
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
In this paper, the method of Galerkin and the Askey-Wiener scheme are used to obtain approximate solutions to the stochastic displacement response of Kirchhoff plates with uncertain parameters. Theoretical and numerical results are presented. The Lax-Milgram lemma is used to express the conditions for existence and uniqueness of the solution. Uncertainties in plate and foundation stiffness are modeled by respecting these conditions, hence using Legendre polynomials indexed in uniform random variables. The space of approximate solutions is built using results of density between the space of continuous functions and Sobolev spaces. Approximate Galerkin solutions are compared with results of Monte Carlo simulation, in terms of first and second order moments and in terms of histograms of the displacement response. Numerical results for two example problems show very fast convergence to the exact solution, at excellent accuracies. The Askey-Wiener Galerkin scheme developed herein is able to reproduce the histogram of the displacement response. The scheme is shown to be a theoretically sound and efficient method for the solution of stochastic problems in engineering. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents concentration inequalities and laws of large numbers under weak assumptions of irrelevance that are expressed using lower and upper expectations. The results build upon De Cooman and Miranda`s recent inequalities and laws of large numbers. The proofs indicate connections between the theory of martingales and concepts of epistemic and regular irrelevance. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we consider testing for additivity in a class of nonparametric stochastic regression models. Two test statistics are constructed and their asymptotic distributions are established. We also conduct a small sample study for one of the test statistics through a simulated example. (C) 2002 Elsevier Science (USA).
Resumo:
O Teorema Central do Limite e a Lei dos Grandes Números estão entre os mais importantes resultados da teoria da probabilidade. O primeiro deles busca condições sob as quais [fórmula] converge em distribuição para a distribuição normal com parâmetros 0 e 1, quando n tende ao infinito, onde Sn é a soma de n variáveis aleatórias independentes. Ao mesmo tempo, o segundo estabelece condições para que [fórmula] convirja a zero, ou equivalentemente, para que [fórmula] convirja para a esperança das variáveis aleatórias, caso elas sejam identicamente distribuídas. Em ambos os casos as sequências abordadas são do tipo [fórmula], onde [fórmula] e [fórmula] são constantes reais. Caracterizar os possíveis limites de tais sequências é um dos objetivos dessa dissertação, já que elas não convergem exclusivamente para uma variável aleatória degenerada ou com distribuição normal como na Lei dos Grandes Números e no Teorema Central do Limite, respectivamente. Assim, somos levados naturalmente ao estudo das distribuições infinitamente divisíveis e estáveis, e os respectivos teoremas limites, e este vem a ser o objetivo principal desta dissertação. Para as demonstrações dos teoremas utiliza-se como estratégia principal a aplicação do método de Lyapunov, o qual consiste na análise da convergência da sequência de funções características correspondentes às variáveis aleatórias. Nesse sentido, faremos também uma abordagem detalhada de tais funções neste trabalho.
Resumo:
We have studied, in particular under normality of the implied random variables, the connections between different measures of risk such as the standard deviation, the W-ruin probability and the p-V@R. We discuss conditions granting the equivalence of these measures with respect to risk preference relations and the equivalence of dominance and efficiency of risk-reward criteria involving these measures. Then more specifically we applied these concepts to rigorously face the problem of finding the efficient set of de Finetti’s variable quota share proportional reinsurance.
Resumo:
The problem of uncertainty propagation in composite laminate structures is studied. An approach based on the optimal design of composite structures to achieve a target reliability level is proposed. Using the Uniform Design Method (UDM), a set of design points is generated over a design domain centred at mean values of random variables, aimed at studying the space variability. The most critical Tsai number, the structural reliability index and the sensitivities are obtained for each UDM design point, using the maximum load obtained from optimal design search. Using the UDM design points as input/output patterns, an Artificial Neural Network (ANN) is developed based on supervised evolutionary learning. Finally, using the developed ANN a Monte Carlo simulation procedure is implemented and the variability of the structural response based on global sensitivity analysis (GSA) is studied. The GSA is based on the first order Sobol indices and relative sensitivities. An appropriate GSA algorithm aiming to obtain Sobol indices is proposed. The most important sources of uncertainty are identified.
Resumo:
An approach for the analysis of uncertainty propagation in reliability-based design optimization of composite laminate structures is presented. Using the Uniform Design Method (UDM), a set of design points is generated over a domain centered on the mean reference values of the random variables. A methodology based on inverse optimal design of composite structures to achieve a specified reliability level is proposed, and the corresponding maximum load is outlined as a function of ply angle. Using the generated UDM design points as input/output patterns, an Artificial Neural Network (ANN) is developed based on an evolutionary learning process. Then, a Monte Carlo simulation using ANN development is performed to simulate the behavior of the critical Tsai number, structural reliability index, and their relative sensitivities as a function of the ply angle of laminates. The results are generated for uniformly distributed random variables on a domain centered on mean values. The statistical analysis of the results enables the study of the variability of the reliability index and its sensitivity relative to the ply angle. Numerical examples showing the utility of the approach for robust design of angle-ply laminates are presented.
Resumo:
This paper presents a methodology based on the Bayesian data fusion techniques applied to non-destructive and destructive tests for the structural assessment of historical constructions. The aim of the methodology is to reduce the uncertainties of the parameter estimation. The Young's modulus of granite stones was chosen as an example for the present paper. The methodology considers several levels of uncertainty since the parameters of interest are considered random variables with random moments. A new concept of Trust Factor was introduced to affect the uncertainty related to each test results, translated by their standard deviation, depending on the higher or lower reliability of each test to predict a certain parameter.
Resumo:
The classical central limit theorem states the uniform convergence of the distribution functions of the standardized sums of independent and identically distributed square integrable real-valued random variables to the standard normal distribution function. While first versions of the central limit theorem are already due to Moivre (1730) and Laplace (1812), a systematic study of this topic started at the beginning of the last century with the fundamental work of Lyapunov (1900, 1901). Meanwhile, extensions of the central limit theorem are available for a multitude of settings. This includes, e.g., Banach space valued random variables as well as substantial relaxations of the assumptions of independence and identical distributions. Furthermore, explicit error bounds are established and asymptotic expansions are employed to obtain better approximations. Classical error estimates like the famous bound of Berry and Esseen are stated in terms of absolute moments of the random summands and therefore do not reflect a potential closeness of the distributions of the single random summands to a normal distribution. Non-classical approaches take this issue into account by providing error estimates based on, e.g., pseudomoments. The latter field of investigation was initiated by work of Zolotarev in the 1960's and is still in its infancy compared to the development of the classical theory. For example, non-classical error bounds for asymptotic expansions seem not to be available up to now ...