966 resultados para Random process


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polynomial Chaos Expansion (PCE) is widely recognized as a flexible tool to represent different types of random variables/processes. However, applications to real, experimental data are still limited. In this article, PCE is used to represent the random time-evolution of metal corrosion growth in marine environments. The PCE coefficients are determined in order to represent data of 45 corrosion coupons tested by Jeffrey and Melchers (2001) at Taylors Beach, Australia. Accuracy of the representation and possibilities for model extrapolation are considered in the study. Results show that reasonably accurate smooth representations of the corrosion process can be obtained. The representation is not better because a smooth model is used to represent non-smooth corrosion data. Random corrosion leads to time-variant reliability problems, due to resistance degradation over time. Time variant reliability problems are not trivial to solve, especially under random process loading. Two example problems are solved herein, showing how the developed PCE representations can be employed in reliability analysis of structures subject to marine corrosion. Monte Carlo Simulation is used to solve the resulting time-variant reliability problems. However, an accurate and more computationally efficient solution is also presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In most real-life environments, mechanical or electronic components are subjected to vibrations. Some of these components may have to pass qualification tests to verify that they can withstand the fatigue damage they will encounter during their operational life. In order to conduct a reliable test, the environmental excitations can be taken as a reference to synthesize the test profile: this procedure is referred to as “test tailoring”. Due to cost and feasibility reasons, accelerated qualification tests are usually performed. In this case, the duration of the original excitation which acts on the component for its entire life-cycle, typically hundreds or thousands of hours, is reduced. In particular, the “Mission Synthesis” procedure lets to quantify the induced damage of the environmental vibration through two functions: the Fatigue Damage Spectrum (FDS) quantifies the fatigue damage, while the Maximum Response Spectrum (MRS) quantifies the maximum stress. Then, a new random Power Spectral Density (PSD) can be synthesized, with same amount of induced damage, but a specified duration in order to conduct accelerated tests. In this work, the Mission Synthesis procedure is applied in the case of so-called Sine-on-Random vibrations, i.e. excitations composed of random vibrations superimposed on deterministic contributions, in the form of sine tones typically due to some rotating parts of the system (e.g. helicopters, engine-mounted components, …). In fact, a proper test tailoring should not only preserve the accumulated fatigue damage, but also the “nature” of the excitation (in this case the sinusoidal components superimposed on the random process) in order to obtain reliable results. The classic time-domain approach is taken as a reference for the comparison of different methods for the FDS calculation in presence of Sine-on-Random vibrations. Then, a methodology to compute a Sine-on-Random specification based on a mission FDS is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

World economies increasingly demand reliable and economical power supply and distribution. To achieve this aim the majority of power systems are becoming interconnected, with several power utilities supplying the one large network. One problem that occurs in a large interconnected power system is the regular occurrence of system disturbances which can result in the creation of intra-area oscillating modes. These modes can be regarded as the transient responses of the power system to excitation, which are generally characterised as decaying sinusoids. For a power system operating ideally these transient responses would ideally would have a “ring-down” time of 10-15 seconds. Sometimes equipment failures disturb the ideal operation of power systems and oscillating modes with ring-down times greater than 15 seconds arise. The larger settling times associated with such “poorly damped” modes cause substantial power flows between generation nodes, resulting in significant physical stresses on the power distribution system. If these modes are not just poorly damped but “negatively damped”, catastrophic failures of the system can occur. To ensure system stability and security of large power systems, the potentially dangerous oscillating modes generated from disturbances (such as equipment failure) must be quickly identified. The power utility must then apply appropriate damping control strategies. In power system monitoring there exist two facets of critical interest. The first is the estimation of modal parameters for a power system in normal, stable, operation. The second is the rapid detection of any substantial changes to this normal, stable operation (because of equipment breakdown for example). Most work to date has concentrated on the first of these two facets, i.e. on modal parameter estimation. Numerous modal parameter estimation techniques have been proposed and implemented, but all have limitations [1-13]. One of the key limitations of all existing parameter estimation methods is the fact that they require very long data records to provide accurate parameter estimates. This is a particularly significant problem after a sudden detrimental change in damping. One simply cannot afford to wait long enough to collect the large amounts of data required for existing parameter estimators. Motivated by this gap in the current body of knowledge and practice, the research reported in this thesis focuses heavily on rapid detection of changes (i.e. on the second facet mentioned above). This thesis reports on a number of new algorithms which can rapidly flag whether or not there has been a detrimental change to a stable operating system. It will be seen that the new algorithms enable sudden modal changes to be detected within quite short time frames (typically about 1 minute), using data from power systems in normal operation. The new methods reported in this thesis are summarised below. The Energy Based Detector (EBD): The rationale for this method is that the modal disturbance energy is greater for lightly damped modes than it is for heavily damped modes (because the latter decay more rapidly). Sudden changes in modal energy, then, imply sudden changes in modal damping. Because the method relies on data from power systems in normal operation, the modal disturbances are random. Accordingly, the disturbance energy is modelled as a random process (with the parameters of the model being determined from the power system under consideration). A threshold is then set based on the statistical model. The energy method is very simple to implement and is computationally efficient. It is, however, only able to determine whether or not a sudden modal deterioration has occurred; it cannot identify which mode has deteriorated. For this reason the method is particularly well suited to smaller interconnected power systems that involve only a single mode. Optimal Individual Mode Detector (OIMD): As discussed in the previous paragraph, the energy detector can only determine whether or not a change has occurred; it cannot flag which mode is responsible for the deterioration. The OIMD seeks to address this shortcoming. It uses optimal detection theory to test for sudden changes in individual modes. In practice, one can have an OIMD operating for all modes within a system, so that changes in any of the modes can be detected. Like the energy detector, the OIMD is based on a statistical model and a subsequently derived threshold test. The Kalman Innovation Detector (KID): This detector is an alternative to the OIMD. Unlike the OIMD, however, it does not explicitly monitor individual modes. Rather it relies on a key property of a Kalman filter, namely that the Kalman innovation (the difference between the estimated and observed outputs) is white as long as the Kalman filter model is valid. A Kalman filter model is set to represent a particular power system. If some event in the power system (such as equipment failure) causes a sudden change to the power system, the Kalman model will no longer be valid and the innovation will no longer be white. Furthermore, if there is a detrimental system change, the innovation spectrum will display strong peaks in the spectrum at frequency locations associated with changes. Hence the innovation spectrum can be monitored to both set-off an “alarm” when a change occurs and to identify which modal frequency has given rise to the change. The threshold for alarming is based on the simple Chi-Squared PDF for a normalised white noise spectrum [14, 15]. While the method can identify the mode which has deteriorated, it does not necessarily indicate whether there has been a frequency or damping change. The PPM discussed next can monitor frequency changes and so can provide some discrimination in this regard. The Polynomial Phase Method (PPM): In [16] the cubic phase (CP) function was introduced as a tool for revealing frequency related spectral changes. This thesis extends the cubic phase function to a generalised class of polynomial phase functions which can reveal frequency related spectral changes in power systems. A statistical analysis of the technique is performed. When applied to power system analysis, the PPM can provide knowledge of sudden shifts in frequency through both the new frequency estimate and the polynomial phase coefficient information. This knowledge can be then cross-referenced with other detection methods to provide improved detection benchmarks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses the principal domains of auto- and cross-trispectra. It is shown that the cumulant and moment based trispectra are identical except on certain planes in trifrequency space. If these planes are avoided, their principal domains can be derived by considering the regions of symmetry of the fourth order spectral moment. The fourth order averaged periodogram will then serve as an estimate for both cumulant and moment trispectra. Statistics of estimates of normalised trispectra or tricoherence are also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Theoretical foundations of higher order spectral analysis are revisited to examine the use of time-varying bicoherence on non-stationary signals using a classical short-time Fourier approach. A methodology is developed to apply this to evoked EEG responses where a stimulus-locked time reference is available. Short-time windowed ensembles of the response at the same offset from the reference are considered as ergodic cyclostationary processes within a non-stationary random process. Bicoherence can be estimated reliably with known levels at which it is significantly different from zero and can be tracked as a function of offset from the stimulus. When this methodology is applied to multi-channel EEG, it is possible to obtain information about phase synchronization at different regions of the brain as the neural response develops. The methodology is applied to analyze evoked EEG response to flash visual stimulii to the left and right eye separately. The EEG electrode array is segmented based on bicoherence evolution with time using the mean absolute difference as a measure of dissimilarity. Segment maps confirm the importance of the occipital region in visual processing and demonstrate a link between the frontal and occipital regions during the response. Maps are constructed using bicoherence at bifrequencies that include the alpha band frequency of 8Hz as well as 4 and 20Hz. Differences are observed between responses from the left eye and the right eye, and also between subjects. The methodology shows potential as a neurological functional imaging technique that can be further developed for diagnosis and monitoring using scalp EEG which is less invasive and less expensive than magnetic resonance imaging.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a multi-layer spectrum sensing optimisation algorithm to maximise sensing efficiency by computing the optimal sensing and transmission durations for a fast changing, dynamic primary user. Dynamic primary user traffic is modelled as a random process, where the primary user changes states during both the sensing period and transmission period to reflect a more realistic scenario. Furthermore, we formulate joint constraints to correctly reflect interference to the primary user and lost opportunity of the secondary user during the transmission period. Finally, we implement a novel duty cycle based detector that is optimised with respect to PU traffic to accurately detect primary user activity during the sensing period. Simulation results show that unlike currently used detection models, the proposed algorithm can jointly optimise the sensing and transmission durations to simultaneously satisfy the optimisation constraints for the considered primary user traffic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metastasis, the passage of primary tumour cells throughout the body via the vascular system and their subsequent proliferation into secondary lesions in distant organs, represents a poor prognosis and therefore an understandably feared event for cancer patients. Despite considerable advances in cancer diagnosis and treatment, most deaths are the result of metastases resistant to conventional treatment [1]. Rather than being a random process, metastasis involves a series of organised steps leading to the growth of a secondary tumour. Malignant tumours stimulate the production of new vessels by the host, and this process is a prerequisite for the increase in size of a new tumour [2]. Angiogenesis, not only permits tumour expansion but also allows the entry of tumour cells into the circulation and is probably the most vital event for the metastatic process [3]. Metastasis and angiogenesis [4] have received much attention in recent years. A biological understanding of both phenomena seems to be an urgent priority towards the search for an effective prevention and treatment of tumour progression. Studies in vitro and in vivo have shown that one of the most important barriers to the passage of malignant cells is the basement membrane. The crossing of such barriers is a vital step in the formation of a metastasis [5].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coalescence between two droplets in a turbulent liquid-liquid dispersion is generally viewed as a consequence of forces exerted on the drop-pair squeezing out the intervening continuous phase to a critical thickness. A new synthesis is proposed herein which models the film drainage as a stochastic process driven by a suitably idealized random process for the fluctuating force. While the true test of the model lies in detailed parameter estimations with measurement of drop-size distributions in coalescing dispersions, experimental measurements on average coalescence frequencies lend preliminary support to the model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A method is developed by which the input leading to the highest possible response in an interval of time can be determined for a class of non-linear systems. The input, if deterministic, is constrained to have a known finite energy (or norm) in the interval under consideration. In the case of random inputs, the energy is constrained to have a known probability distribution function. The approach has applications when a system has to be put to maximum advantage by getting the largest possible output or when a system has to be designed to the highest maximum response with only the input energy or the energy distribution known. The method is also useful in arriving at a bound on the highest peak distribution of the response, when the excitation is a known random process.As an illustration the Duffing oscillator has been analysed and some numerical results have also been presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spike detection in neural recordings is the initial step in the creation of brain machine interfaces. The Teager energy operator (TEO) treats a spike as an increase in the `local' energy and detects this increase. The performance of TEO in detecting action potential spikes suffers due to its sensitivity to the frequency of spikes in the presence of noise which is present in microelectrode array (MEA) recordings. The multiresolution TEO (mTEO) method overcomes this shortcoming of the TEO by tuning the parameter k to an optimal value m so as to match to frequency of the spike. In this paper, we present an algorithm for the mTEO using the multiresolution structure of wavelets along with inbuilt lowpass filtering of the subband signals. The algorithm is efficient and can be implemented for real-time processing of neural signals for spike detection. The performance of the algorithm is tested on a simulated neural signal with 10 spike templates obtained from [14]. The background noise is modeled as a colored Gaussian random process. Using the noise standard deviation and autocorrelation functions obtained from recorded data, background noise was simulated by an autoregressive (AR(5)) filter. The simulations show a spike detection accuracy of 90%and above with less than 5% false positives at an SNR of 2.35 dB as compared to 80% accuracy and 10% false positives reported [6] on simulated neural signals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrical failure of insulation is known to be an extremal random process wherein nominally identical pro-rated specimens of equipment insulation, at constant stress fail at inordinately different times even under laboratory test conditions. In order to be able to estimate the life of power equipment, it is necessary to run long duration ageing experiments under accelerated stresses, to acquire and analyze insulation specific failure data. In the present work, Resin Impregnated Paper (RIP) a relatively new insulation system of choice used in transformer bushings, is taken as an example. The failure data has been processed using proven statistical methods, both graphical and analytical. The physical model governing insulation failure at constant accelerated stress has been assumed to be based on temperature dependent inverse power law model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Accurately characterizing the time-varying interference caused to the primary users is essential in ensuring a successful deployment of cognitive radios (CR). We show that the aggregate interference at the primary receiver (PU-Rx) from multiple, randomly located cognitive users (CUs) is well modeled as a shifted lognormal random process, which is more accurate than the lognormal and the Gaussian process models considered in the literature, even for a relatively dense deployment of CUs. It also compares favorably with the asymptotically exact stable and symmetric truncated stable distribution models, except at high CU densities. Our model accounts for the effect of imperfect spectrum sensing, which depends on path-loss, shadowing, and small-scale fading of the link from the primary transmitter to the CU; the interweave and underlay modes or CR operation, which determine the transmit powers of the CUs; and time-correlated shadowing and fading of the links from the CUs to the PU-Rx. It leads to expressions for the probability distribution function, level crossing rate, and average exceedance duration. The impact of cooperative spectrum sensing is also characterized. We validate the model by applying it to redesign the primary exclusive zone to account for the time-varying nature of interference.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Response analysis of a linear structure with uncertainties in both structural parameters and external excitation is considered here. When such an analysis is carried out using the spectral stochastic finite element method (SSFEM), often the computational cost tends to be prohibitive due to the rapid growth of the number of spectral bases with the number of random variables and the order of expansion. For instance, if the excitation contains a random frequency, or if it is a general random process, then a good approximation of these excitations using polynomial chaos expansion (PCE) involves a large number of terms, which leads to very high cost. To address this issue of high computational cost, a hybrid method is proposed in this work. In this method, first the random eigenvalue problem is solved using the weak formulation of SSFEM, which involves solving a system of deterministic nonlinear algebraic equations to estimate the PCE coefficients of the random eigenvalues and eigenvectors. Then the response is estimated using a Monte Carlo (MC) simulation, where the modal bases are sampled from the PCE of the random eigenvectors estimated in the previous step, followed by a numerical time integration. It is observed through numerical studies that this proposed method successfully reduces the computational burden compared with either a pure SSFEM of a pure MC simulation and more accurate than a perturbation method. The computational gain improves as the problem size in terms of degrees of freedom grows. It also improves as the timespan of interest reduces.