954 resultados para Random access system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Groupe Spécial Mobile (GSM) has been developed as the pan-European second generation of digital mobile systems. GSM operates in the 900 MHz frequency band and employs digital technology instead of the analogue technology of its predecessors. Digital technology enables the GSM system to operate in much smaller zones in comparison with the analogue systems. The GSM system will offer greater roaming facilities to its subscribers, extended throughout the countries that have installed the system. The GSM system could be seen as a further enhancement to European integration. GSM has adopted a contention-based protocol for multipoint-to-point transmission. In particular, the slotted-ALOHA medium access protocol is used to coordinate the transmission of the channel request messages between the scattered mobile stations. Collision still happens when more than one mobile station having the same random reference number attempts to transmit on the same time-slot. In this research, a modified version of this protocol has been developed in order to reduce the number of collisions and hence increase the random access channel throughput compared to the existing protocol. The performance evaluation of the protocol has been carried out using simulation methods. Due to the growing demand for mobile radio telephony as well as for data services, optimal usage of the scarce availability radio spectrum is becoming increasingly important. In this research, a protocol has been developed whereby the number of transmitted information packets over the GSM system is increased without any additional increase of the allocated radio spectrum. Simulation results are presented to show the improvements achieved by the proposed protocol. Cellular mobile radio networks commonly respond to an increase in the service demand by using smaller coverage areas. As a result, the volume of the signalling exchanges increases. In this research, a proposal for interconnecting the various entitles of the mobile radio network over the future broadband networks based on the IEEE 802.6 Metropolitan Area Network (MAN) is outlined. Simulation results are presented to show the benefits achieved by interconnecting these entities over the broadband Networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In next generation Internet-of-Things, the overhead introduced by grant-based multiple access protocols may engulf the access network as a consequence of the proliferation of connected devices. Grant-free access protocols are therefore gaining an increasing interest to support massive multiple access. In addition to scalability requirements, new demands have emerged for massive multiple access, including latency and reliability. The challenges envisaged for future wireless communication networks, particularly in the context of massive access, include: i) a very large population size of low power devices transmitting short packets; ii) an ever-increasing scalability requirement; iii) a mild fixed maximum latency requirement; iv) a non-trivial requirement on reliability. To this aim, we suggest the joint utilization of grant-free access protocols, massive MIMO at the base station side, framed schemes to let the contention start and end within a frame, and succesive interference cancellation techniques at the base station side. In essence, this approach is encapsulated in the concept of coded random access with massive MIMO processing. These schemes can be explored from various angles, spanning the protocol stack from the physical (PHY) to the medium access control (MAC) layer. In this thesis, we delve into both of these layers, examining topics ranging from symbol-level signal processing to succesive interference cancellation-based scheduling strategies. In parallel with proposing new schemes, our work includes a theoretical analysis aimed at providing valuable system design guidelines. As a main theoretical outcome, we propose a novel joint PHY and MAC layer design based on density evolution on sparse graphs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent years have witnessed an increasing evolution of wireless mobile networks, with an intensive research work aimed at developing new efficient techniques for the future 6G standards. In the framework of massive machine-type communication (mMTC), emerging Internet of Things (IoT) applications, in which sensor nodes and smart devices transmit unpredictably and sporadically short data packets without coordination, are gaining an increasing interest. In this work, new medium access control (MAC) protocols for massive IoT, capable of supporting a non-instantaneous feedback from the receiver, are studied. These schemes guarantee an high time for the acknowledgment (ACK) messages to the base station (BS), without a significant performance loss. Then, an error floor analysis of the considered protocols is performed in order to obtain useful guidelines for the system design. Furthermore, non-orthogonal multiple access (NOMA) coded random access (CRA) schemes based on power domain are here developed. The introduction of power diversity permits to solve more packet collision at the physical (PHY) layer, with an important reduction of the packet loss rate (PLR) in comparison to the number of active users in the system. The proposed solutions aim to improve the actual grant-free protocols, respecting the stringent constraints of scalability, reliability and latency requested by 6G networks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

8th International Workshop on Multiple Access Communications (MACOM2015), Helsinki, Finland.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of n-tuple or weightless neural networks as pattern recognition devices is well known (Aleksander and Stonham, 1979). They have some significant advantages over the more common and biologically plausible networks, such as multi-layer perceptrons; for example, n-tuple networks have been used for a variety of tasks, the most popular being real-time pattern recognition, and they can be implemented easily in hardware as they use standard random access memories. In operation, a series of images of an object are shown to the network, each being processed suitably and effectively stored in a memory called a discriminator. Then, when another image is shown to the system, it is processed in a similar manner and the system reports whether it recognises the image; is the image sufficiently similar to one already taught? If the system is to be able to recognise and discriminate between m-objects, then it must contain m-discriminators. This can require a great deal of memory. This paper describes various ways in which memory requirements can be reduced, including a novel method for multiple discriminator n-tuple networks used for pattern recognition. By using this method, the memory normally required to handle m-objects can be used to recognise and discriminate between 2^m — 2 objects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The LiHoxY1-xF4 magnetic material in a transverse magnetic field Bxx̂ perpendicular to the Ising spin direction has long been used to study tunable quantum phase transitions in a random disordered system. We show that the Bx-induced magnetization along the x̂ direction, combined with the local random dilution-induced destruction of crystalline symmetries, generates, via the predominant dipolar interactions between Ho3+ ions, random fields along the Ising ẑ direction. This identifies LiHoxY1-xF4 in Bx as a new random field Ising system. The random fields explain the rapid decrease of the critical temperature in the diluted ferromagnetic regime and the smearing of the nonlinear susceptibility at the spin-glass transition with increasing Bx and render the Bx-induced quantum criticality in LiHoxY1-xF4 likely inaccessible.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider a random walks system on Z in which each active particle performs a nearest-neighbor random walk and activates all inactive particles it encounters. The movement of an active particle stops when it reaches a certain number of jumps without activating any particle. We prove that if the process relies on efficient particles (i.e. those particles with a small probability of jumping to the left) being placed strategically on Z, then it might survive, having active particles at any time with positive probability. On the other hand, we may construct a process that dies out eventually almost surely, even if it relies on efficient particles. That is, we discuss what happens if particles are initially placed very far away from each other or if their probability of jumping to the right tends to I but not fast enough.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Random access (RA) protocols are normally used in a satellite networks for initial terminal access and are particularly effective since no coordination is required. On the other hand, contention resolution diversity slotted Aloha (CRDSA), irregular repetition slotted Aloha (IRSA) and coded slotted Aloha (CSA) has shown to be more efficient than classic RA schemes as slotted Aloha, and can be exploited also when short packets transmissions are done over a shared medium. In particular, they relies on burst repetition and on successive interference cancellation (SIC) applied at the receiver. The SIC process can be well described using a bipartite graph representation and exploiting tools used for analyze iterative decoding. The scope of my Master Thesis has been to described the performance of such RA protocols when the Rayleigh fading is taken into account. In this context, each user has the ability to correctly decode a packet also in presence of collision and when SIC is considered this may result in multi-packet reception. Analysis of the SIC procedure under Rayleigh fading has been analytically derived for the asymptotic case (infinite frame length), helping the analysis of both throughput and packet loss rates. An upper bound of the achievable performance has been analytically obtained. It can be show that in particular channel conditions the throughput of the system can be greater than one packets per slot which is the theoretical limit of the Collision Channel case.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the features of low-power and flexible networking capabilities IEEE 802.15.4 has been widely regarded as one strong candidate of communication technologies for wireless sensor networks (WSNs). It is expected that with an increasing number of deployments of 802.15.4 based WSNs, multiple WSNs could coexist with full or partial overlap in residential or enterprise areas. As WSNs are usually deployed without coordination, the communication could meet significant degradation with the 802.15.4 channel access scheme, which has a large impact on system performance. In this thesis we are motivated to investigate the effectiveness of 802.15.4 networks supporting WSN applications with various environments, especially when hidden terminals are presented due to the uncoordinated coexistence problem. Both analytical models and system level simulators are developed to analyse the performance of the random access scheme specified by IEEE 802.15.4 medium access control (MAC) standard for several network scenarios. The first part of the thesis investigates the effectiveness of single 802.15.4 network supporting WSN applications. A Markov chain based analytic model is applied to model the MAC behaviour of IEEE 802.15.4 standard and a discrete event simulator is also developed to analyse the performance and verify the proposed analytical model. It is observed that 802.15.4 networks could sufficiently support most WSN applications with its various functionalities. After the investigation of single network, the uncoordinated coexistence problem of multiple 802.15.4 networks deployed with communication range fully or partially overlapped are investigated in the next part of the thesis. Both nonsleep and sleep modes are investigated with different channel conditions by analytic and simulation methods to obtain the comprehensive performance evaluation. It is found that the uncoordinated coexistence problem can significantly degrade the performance of 802.15.4 networks, which is unlikely to satisfy the QoS requirements for many WSN applications. The proposed analytic model is validated by simulations which could be used to obtain the optimal parameter setting before WSNs deployments to eliminate the interference risks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The biggest threat to any business is a lack of timely and accurate information. Without all the facts, businesses are pressured to make critical decisions and assess risks and opportunities based largely on guesswork, sometimes resulting in financial losses and missed opportunities. The meteoric rise of Databases (DB) appears to confirm the adage that “information is power”, but the stark reality is that information is useless if one has no way to find what one needs to know. It is more accurate perhaps to state that, “the ability to find information is power”. In this paper we show how Instantaneous Database Access System (IDAS) can make a crucial difference by pulling data together and allowing users to summarise information quickly from all areas of a business organisation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Next-generation integrated wireless local area network (WLAN) and 3G cellular networks aim to take advantage of the roaming ability in a cellular network and the high data rate services of a WLAN. To ensure successful implementation of an integrated network, many issues must be carefully addressed, including network architecture design, resource management, quality-of-service (QoS), call admission control (CAC) and mobility management. ^ This dissertation focuses on QoS provisioning, CAC, and the network architecture design in the integration of WLANs and cellular networks. First, a new scheduling algorithm and a call admission control mechanism in IEEE 802.11 WLAN are presented to support multimedia services with QoS provisioning. The proposed scheduling algorithms make use of the idle system time to reduce the average packet loss of realtime (RT) services. The admission control mechanism provides long-term transmission quality for both RT and NRT services by ensuring the packet loss ratio for RT services and the throughput for non-real-time (NRT) services. ^ A joint CAC scheme is proposed to efficiently balance traffic load in the integrated environment. A channel searching and replacement algorithm (CSR) is developed to relieve traffic congestion in the cellular network by using idle channels in the WLAN. The CSR is optimized to minimize the system cost in terms of the blocking probability in the interworking environment. Specifically, it is proved that there exists an optimal admission probability for passive handoffs that minimizes the total system cost. Also, a method of searching the probability is designed based on linear-programming techniques. ^ Finally, a new integration architecture, Hybrid Coupling with Radio Access System (HCRAS), is proposed for lowering the average cost of intersystem communication (IC) and the vertical handoff latency. An analytical model is presented to evaluate the system performance of the HCRAS in terms of the intersystem communication cost function and the handoff cost function. Based on this model, an algorithm is designed to determine the optimal route for each intersystem communication. Additionally, a fast handoff algorithm is developed to reduce the vertical handoff latency.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The discovery that a spin-polarized current is capable of exerting a torque in a ferromagnetic material, through spin transfer, might provide the development of new technological devices that store information via the direction of magnetization. The reduction of current density to revert the magnetization is a primary issue to potential applications on non volatile random access memories (MRAM). We report a theorical study of the dipolar and shape effects on the critical current density for reversal of magnetization, via spin transfer torque (STT), on ferromagnetic nanoelements. The nanostructured system consists on a reference layer, in which the current will be spin-polarized, and a free layer of magnetization reversal. We observed considerable changes on the critical current density as a function of the element’s reversion layer thickness (t = 1.0 nm, 1.5 nm, 2.0 nm e 2.5 nm) and geometry (circular and elliptical), the material kind of the system free layer (Iron and Permalloy) and according to the orientation of the magnetization and the spin polarization with the major axis. We show that the critical current density may be reduced about 50% by reducing the Fe free layer thickness and around 75% when we change the saturation magnetization of circular nanoelements with 2.5 nm of thickness. We still observed a reduction as much as 90% on the current density of reversion for thin nanoelements magnetized along the minor axis direction, using in-plane spin polarization parallel to the magnetization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Massive Internet of Things is expected to play a crucial role in Beyond 5G (B5G) wireless communication systems, offering seamless connectivity among heterogeneous devices without human intervention. However, the exponential proliferation of smart devices and IoT networks, relying solely on terrestrial networks, may not fully meet the demanding IoT requirements in terms of bandwidth and connectivity, especially in areas where terrestrial infrastructures are not economically viable. To unleash the full potential of 5G and B5G networks and enable seamless connectivity everywhere, the 3GPP envisions the integration of Non-Terrestrial Networks (NTNs) into the terrestrial ones starting from Release 17. However, this integration process requires modifications to the 5G standard to ensure reliable communications despite typical satellite channel impairments. In this framework, this thesis aims at proposing techniques at the Physical and Medium Access Control layers that require minimal adaptations in the current NB-IoT standard via NTN. Thus, firstly the satellite impairments are evaluated and, then, a detailed link budget analysis is provided. Following, analyses at the link and the system levels are conducted. In the former case, a novel algorithm leveraging time-frequency analysis is proposed to detect orthogonal preambles and estimate the signals’ arrival time. Besides, the effects of collisions on the detection probability and Bit Error Rate are investigated and Non-Orthogonal Multiple Access approaches are proposed in the random access and data phases. The system analysis evaluates the performance of random access in case of congestion. Various access parameters are tested in different satellite scenarios, and the performance is measured in terms of access probability and time required to complete the procedure. Finally, a heuristic algorithm is proposed to jointly design the access and data phases, determining the number of satellite passages, the Random Access Periodicity, and the number of uplink repetitions that maximize the system's spectral efficiency.