988 resultados para Rainfall Modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

[1] In many practical situations where spatial rainfall estimates are needed, rainfall occurs as a spatially intermittent phenomenon. An efficient geostatistical method for rainfall estimation in the case of intermittency has previously been published and comprises the estimation of two independent components: a binary random function for modeling the intermittency and a continuous random function that models the rainfall inside the rainy areas. The final rainfall estimates are obtained as the product of the estimates of these two random functions. However the published approach does not contain a method for estimation of uncertainties. The contribution of this paper is the presentation of the indicator maximum likelihood estimator from which the local conditional distribution of the rainfall value at any location may be derived using an ensemble approach. From the conditional distribution, representations of uncertainty such as the estimation variance and confidence intervals can be obtained. An approximation to the variance can be calculated more simply by assuming rainfall intensity is independent of location within the rainy area. The methodology has been validated using simulated and real rainfall data sets. The results of these case studies show good agreement between predicted uncertainties and measured errors obtained from the validation data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two models for predicting Septoria tritici on winter wheat (cv. Ri-band) were developed using a program based on an iterative search of correlations between disease severity and weather. Data from four consecutive cropping seasons (1993/94 until 1996/97) at nine sites throughout England were used. A qualitative model predicted the presence or absence of Septoria tritici (at a 5% severity threshold within the top three leaf layers) using winter temperature (January/February) and wind speed to about the first node detectable growth stage. For sites above the disease threshold, a quantitative model predicted severity of Septoria tritici using rainfall during stern elongation. A test statistic was derived to test the validity of the iterative search used to obtain both models. This statistic was used in combination with bootstrap analyses in which the search program was rerun using weather data from previous years, therefore uncorrelated with the disease data, to investigate how likely correlations such as the ones found in our models would have been in the absence of genuine relationships.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Substantial low-frequency rainfall fluctuations occurred in the Sahel throughout the twentieth century, causing devastating drought. Modeling these low-frequency rainfall fluctuations has remained problematic for climate models for many years. Here we show using a combination of state-of-the-art rainfall observations and high-resolution global climate models that changes in organized heavy rainfall events carry most of the rainfall variability in the Sahel at multiannual to decadal time scales. Ability to produce intense, organized convection allows climate models to correctly simulate the magnitude of late-twentieth century rainfall change, underlining the importance of model resolution. Increasing model resolution allows a better coupling between large-scale circulation changes and regional rainfall processes over the Sahel. These results provide a strong basis for developing more reliable and skilful long-term predictions of rainfall (seasons to years) which could benefit many sectors in the region by allowing early adaptation to impending extremes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors simulated the effects of Amazonian mesoscale deforestation in the boundary layer and in rainfall with the Brazilian Regional Atmospheric Modeling System (BRAMS) model. They found that both the area and shape (with respect to wind incidence) of deforestation and the soil moisture status contributed to the state of the atmosphere during the time scale of several weeks, with distinguishable patterns of temperature, humidity, and rainfall. Deforestation resulted in the development of a three-dimensional thermal cell, the so-called deforestation breeze, slightly shifted downwind to large-scale circulation. The boundary layer was warmer and drier above 1000-m height and was slightly wetter up to 2000-m height. Soil wetness affected the circulation energetics proportionally to the soil dryness (for soil wetness below similar to 0.6). The shape of the deforestation controlled the impact on rainfall. The horizontal strips lined up with the prevailing wind showed a dominant increase in rainfall, significant up to about 60 000 km(2). On the other hand, in the patches aligned in the opposite direction (north-south), there was both increase and decrease in precipitation in two distinct regions, as a result of clearly separated upward and downward branches, which caused the precipitation to increase for patches up to 15 000 km(2). The authors` estimates for the size of deforestation impacting the rainfall contributed to fill up the low spatial resolution in other previous studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study of the potential role of aerosols in modifying clouds and precipitation is presented using a numerical atmospheric model. Measurements of cloud condensation nuclei (CCN) and cloud size distribution properties taken in the southwestern Amazon region during the transition from dry to wet seasons were used as guidelines to define the microphysical parameters for the simulations. Numerical simulations were carried out using the Brazilian Development on Regional Atmospheric Modeling System, and the results presented considerable sensitivity to changes in these parameters. High CCN concentrations, typical of polluted days, were found to result in increases or decreases in total precipitation, depending on the level of pollution used as a reference, showing a complexity that parallels the aerosol-precipitation interaction. Our results show that on the grids evaluated, higher CCN concentrations reduced low-to-moderate rainfall rates and increased high rainfall rates. The principal consequence of the increased pollution was a change from a warm to a cold rain process, which affected the maximum and overall mean accumulated precipitation. Under polluted conditions, cloud cover diminished, allowing greater amounts of solar radiation to reach the surface. Aerosol absorption of radiation in the lower layers of the atmosphere delayed convective evolution but produced higher maximum rainfall rates due to increased instability. In addition, the intensity of the surface sensible heat flux, as well as that of the latent heat flux, was reduced by the lower temperature difference between surface and air, producing greater energy stores at the surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrological loss is a vital component in many hydrological models, which are usedin forecasting floods and evaluating water resources for both surface and subsurface flows. Due to the complex and random nature of the rainfall runoff process, hydrological losses are not yet fully understood. Consequently, practitioners often use representative values of the losses for design applications such as rainfall-runoff modelling which has led to inaccurate quantification of water quantities in the resulting applications. The existing hydrological loss models must be revisited and modellers should be encouraged to utilise other available data sets. This study is based on three unregulated catchments situated in Mt. Lofty Ranges of South Australia (SA). The paper focuses on conceptual models for: initial loss (IL), continuing loss (CL) and proportional loss (PL) with rainfall characteristics (total rainfall (TR) and storm duration (D)), and antecedent wetness (AW) conditions. The paper introduces two methods that can be implemented to estimate IL as a function of TR, D and AW. The IL distribution patterns and parameters for the study catchments are determined using multivariate analysis and descriptive statistics. The possibility of generalising the methods and the limitations of this are also discussed. This study will yield improvements to existing loss models and will encourage practitioners to utilise multiple data sets to estimate losses, instead of using hypothetical or representative values to generalise real situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A procedure for characterizing global uncertainty of a rainfall-runoff simulation model based on using grey numbers is presented. By using the grey numbers technique the uncertainty is characterized by an interval; once the parameters of the rainfall-runoff model have been properly defined as grey numbers, by using the grey mathematics and functions it is possible to obtain simulated discharges in the form of grey numbers whose envelope defines a band which represents the vagueness/uncertainty associated with the simulated variable. The grey numbers representing the model parameters are estimated in such a way that the band obtained from the envelope of simulated grey discharges includes an assigned percentage of observed discharge values and is at the same time as narrow as possible. The approach is applied to a real case study highlighting that a rigorous application of the procedure for direct simulation through the rainfall-runoff model with grey parameters involves long computational times. However, these times can be significantly reduced using a simplified computing procedure with minimal approximations in the quantification of the grey numbers representing the simulated discharges. Relying on this simplified procedure, the conceptual rainfall-runoff grey model is thus calibrated and the uncertainty bands obtained both downstream of the calibration process and downstream of the validation process are compared with those obtained by using a well-established approach, like the GLUE approach, for characterizing uncertainty. The results of the comparison show that the proposed approach may represent a valid tool for characterizing the global uncertainty associable with the output of a rainfall-runoff simulation model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While the simulation of flood risks originating from the overtopping of river banks is well covered within continuously evaluated programs to improve flood protection measures, flash flooding is not. Flash floods are triggered by short, local thunderstorm cells with high precipitation intensities. Small catchments have short response times and flow paths and convective thunder cells may result in potential flooding of endangered settlements. Assessing local flooding and pathways of flood requires a detailed hydraulic simulation of the surface runoff. Hydrological models usually do not incorporate surface runoff at this detailedness but rather empirical equations are applied for runoff detention. In return 2D hydrodynamic models usually do not allow distributed rainfall as input nor are any types of soil/surface interaction implemented as in hydrological models. Considering several cases of local flash flooding during the last years the issue emerged for practical reasons but as well as research topics to closing the model gap between distributed rainfall and distributed runoff formation. Therefore, a 2D hydrodynamic model, depth-averaged flow equations using the finite volume discretization, was extended to accept direct rainfall enabling to simulate the associated runoff formation. The model itself is used as numerical engine, rainfall is introduced via the modification of waterlevels at fixed time intervals. The paper not only deals with the general application of the software, but intends to test the numerical stability and reliability of simulation results. The performed tests are made using different artificial as well as measured rainfall series as input. Key parameters of the simulation such as losses, roughness or time intervals for water level manipulations are tested regarding their impact on the stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Existing distributed hydrologic models are complex and computationally demanding for using as a rapid-forecasting policy-decision tool, or even as a class-room educational tool. In addition, platform dependence, specific input/output data structures and non-dynamic data-interaction with pluggable software components inside the existing proprietary frameworks make these models restrictive only to the specialized user groups. RWater is a web-based hydrologic analysis and modeling framework that utilizes the commonly used R software within the HUBzero cyber infrastructure of Purdue University. RWater is designed as an integrated framework for distributed hydrologic simulation, along with subsequent parameter optimization and visualization schemes. RWater provides platform independent web-based interface, flexible data integration capacity, grid-based simulations, and user-extensibility. RWater uses RStudio to simulate hydrologic processes on raster based data obtained through conventional GIS pre-processing. The program integrates Shuffled Complex Evolution (SCE) algorithm for parameter optimization. Moreover, RWater enables users to produce different descriptive statistics and visualization of the outputs at different temporal resolutions. The applicability of RWater will be demonstrated by application on two watersheds in Indiana for multiple rainfall events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed energy and water balance models require time-series surfaces of the meteorological variables involved in hydrological processes. Most of the hydrological GIS-based models apply simple interpolation techniques to extrapolate the point scale values registered at weather stations at a watershed scale. In mountainous areas, where the monitoring network ineffectively covers the complex terrain heterogeneity, simple geostatistical methods for spatial interpolation are not always representative enough, and algorithms that explicitly or implicitly account for the features creating strong local gradients in the meteorological variables must be applied. Originally developed as a meteorological pre-processing tool for a complete hydrological model (WiMMed), MeteoMap has become an independent software. The individual interpolation algorithms used to approximate the spatial distribution of each meteorological variable were carefully selected taking into account both, the specific variable being mapped, and the common lack of input data from Mediterranean mountainous areas. They include corrections with height for both rainfall and temperature (Herrero et al., 2007), and topographic corrections for solar radiation (Aguilar et al., 2010). MeteoMap is a GIS-based freeware upon registration. Input data include weather station records and topographic data and the output consists of tables and maps of the meteorological variables at hourly, daily, predefined rainfall event duration or annual scales. It offers its own pre and post-processing tools, including video outlook, map printing and the possibility of exporting the maps to images or ASCII ArcGIS formats. This study presents the friendly user interface of the software and shows some case studies with applications to hydrological modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assimilation of satellite estimated precipitation data can be used as an efficient tool to improve the analysis of rainfall generated by numerical models of weather forecast. The system of data assimilation used in this study is cumulus parameterization inversion based on the Kuo scheme. Reanalysis were performed using the field experiment data of the LBA Project (WETAMC and DRYtoWET-AMC), where it was possible to verify an improvement in the simulations results, since the data assimilation corrects the position and the intensity of rainfall in the numerical model. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial prediction of hourly rainfall via radar calibration is addressed. The change of support problem (COSP), arising when the spatial supports of different data sources do not coincide, is faced in a non-Gaussian setting; in fact, hourly rainfall in Emilia-Romagna region, in Italy, is characterized by abundance of zero values and right-skeweness of the distribution of positive amounts. Rain gauge direct measurements on sparsely distributed locations and hourly cumulated radar grids are provided by the ARPA-SIMC Emilia-Romagna. We propose a three-stage Bayesian hierarchical model for radar calibration, exploiting rain gauges as reference measure. Rain probability and amounts are modeled via linear relationships with radar in the log scale; spatial correlated Gaussian effects capture the residual information. We employ a probit link for rainfall probability and Gamma distribution for rainfall positive amounts; the two steps are joined via a two-part semicontinuous model. Three model specifications differently addressing COSP are presented; in particular, a stochastic weighting of all radar pixels, driven by a latent Gaussian process defined on the grid, is employed. Estimation is performed via MCMC procedures implemented in C, linked to R software. Communication and evaluation of probabilistic, point and interval predictions is investigated. A non-randomized PIT histogram is proposed for correctly assessing calibration and coverage of two-part semicontinuous models. Predictions obtained with the different model specifications are evaluated via graphical tools (Reliability Plot, Sharpness Histogram, PIT Histogram, Brier Score Plot and Quantile Decomposition Plot), proper scoring rules (Brier Score, Continuous Rank Probability Score) and consistent scoring functions (Root Mean Square Error and Mean Absolute Error addressing the predictive mean and median, respectively). Calibration is reached and the inclusion of neighbouring information slightly improves predictions. All specifications outperform a benchmark model with incorrelated effects, confirming the relevance of spatial correlation for modeling rainfall probability and accumulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge modeling tools are software tools that follow a modeling approach to help developers in building a knowledge-based system. The purpose of this article is to show the advantages of using this type of tools in the development of complex knowledge-based decision support systems. In order to do so, the article describes the development of a system called SAIDA in the domain of hydrology with the help of the KSM modeling tool. SAIDA operates on real-time receiving data recorded by sensors (rainfall, water levels, flows, etc.). It follows a multi-agent architecture to interpret the data, predict the future behavior and recommend control actions. The system includes an advanced knowledge based architecture with multiple symbolic representation. KSM was especially useful to design and implement the complex knowledge based architecture in an efficient way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The geomechanical modeling of failure and post failure stages of rainfall induced shallow landslides represents a fundamental issue to properly assess the failure conditions and recognize the potential for long travel distances of the failed soil masses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term forecasts of pest pressure are central to the effective management of many agricultural insect pests. In the eastern cropping regions of Australia, serious infestations of Helicoverpa punctigera (Wallengren) and H. armigera (Hübner)(Lepidoptera: Noctuidae) are experienced annually. Regression analyses of a long series of light-trap catches of adult moths were used to describe the seasonal dynamics of both species. The size of the spring generation in eastern cropping zones could be related to rainfall in putative source areas in inland Australia. Subsequent generations could be related to the abundance of various crops in agricultural areas, rainfall and the magnitude of the spring population peak. As rainfall figured prominently as a predictor variable, and can itself be predicted using the Southern Oscillation Index (SOI), trap catches were also related to this variable. The geographic distribution of each species was modelled in relation to climate and CLIMEX was used to predict temporal variation in abundance at given putative source sites in inland Australia using historical meteorological data. These predictions were then correlated with subsequent pest abundance data in a major cropping region. The regression-based and bioclimatic-based approaches to predicting pest abundance are compared and their utility in predicting and interpreting pest dynamics are discussed.