982 resultados para Railroad crossings
Resumo:
Mode of access: Internet.
Resumo:
Federal Railroad Administration, Office of Policy and Program Development, Washington, D.C.
Resumo:
Transportation Systems Center, Cambridge, Mass.
Resumo:
Federal Railroad Administration, Office of Research and Development, Washington, D.C.
Resumo:
"Final report July 1998 through July 2000"--Technical report documentation page.
Resumo:
Summaries of the data gathered for this project.
Resumo:
Level crossing risk continues to be a significant safety concern for the security of rail operations around the world. Over the last decade or so, a third of railway related fatalities occurred as a direct result of collisions between road and rail vehicles in Australia. Importantly, nearly half of these collisions occurred at railway level crossings with no active protection, such as flashing lights or boom barriers. Current practice is to upgrade level crossings that have no active protection. However, the total number of level crossings found across Australia exceed 23,500, and targeting the proportion of these that are considered high risk (e.g. public crossings with passive controls) would cost in excess of AU$3.25 billion based on equipment, installation and commissioning costs of warning devices that are currently type approved. Level crossing warning devices that are low-cost provide a potentially effective control for reducing risk; however, over the last decade, there have been significant barriers and legal issues in both Australia and the US that have foreshadowed their adoption. These devices are designed to have significantly lower lifecycle costs compared with traditional warning devices. They often make use of use of alternative technologies for train detection, wireless connectivity and solar energy supply. This paper describes the barriers that have been encountered for the adoption of these devices in Australia, including the challenges associated with: (1) determining requisite safety levels for such devices; (2) legal issues relating to duty of care obligations of railway operators; and (3) issues of Tort liability around the use of less than fail-safe equipment. This paper provides an overview of a comprehensive safety justification that was developed as part of a project funded by a collaborative rail research initiative established by the Australian government, and describes the conceptual framework and processes being used to justify its adoption. The paper provides a summary of key points from peer review and discusses prospective barriers that may need to be overcome for future adoption. A successful outcome from this process would result in the development of a guideline for decision-making, providing a precedence for adopting low-cost level crossing warning devices in other parts of the world. The framework described in this paper also provides relevance to the review and adoption of analogous technologies in rail and other safety critical industries.
Resumo:
The problem of the Atchison, Topeka, and Santa Fe railroad in Pasadena is a very dynamic one, as is readily recognized by engineers, city officials, and laymen. The route of the railroad was first laid out in the eighties and because of certain liberal concessions granted by the City of Pasadena, the right-of-way was located through Pasadena, despite the fact that the grade coming into the city either from Los Angeles or San Bernardino was enormous. Some years later, other transcontinental routes of the Santa Fe out of Los Angles were sought, and a right-of-way was obtained by way of Fullerton and Riverside to San Bernardino, where this route joins the one from Los Angeles through Pasadena. This route, however, is ten miles longer than the one through Pasadena, which means a considerable loss of time in a short diversion of approximately only sixty miles in length.
Resumo:
In the context of the present conference paper culverts are defined as an opening or conduit passing through an embankment usually for the purpose of conveying water or providing safe pedestrian and animal crossings under rail infrastructure. The clear opening of culverts may reach values of up to 12m however, values around 3m are encountered much more frequently. Depending on the topography, the number of culverts is about 10 times that of bridges. In spite of this, their dynamic behavior has received far less attention than that of bridges. The fundamental frequency of culverts is considerably higher than that of bridges even in the case of short span bridges. As the operational speed of modern high-speed passenger rail systems rises, higher frequencies are excited and thus more energy is encountered in frequency bands where the fundamental frequency of box culverts is located. Many research efforts have been spent on the subject of ballast instability due to bridge resonance, since it was first observed when high-speed trains were introduced to the Paris/Lyon rail line. To prevent this phenomenon from occurring, design codes establish a limit value for the vertical deck acceleration. Obviously one needs some sort of numerical model in order to estimate this acceleration level and at that point things get quite complicated. Not only acceleration but also displacement values are of interest e.g. to estimate the impact factor. According to design manuals the structural design should consider the depth of cover, trench width and condition, bedding type, backfill material, and compaction. The same applies to the numerical model however, the question is: What type of model is appropriate for this job? A 3D model including the embankment and an important part of the soil underneath the culvert is computationally very expensive and hard to justify taking into account the associated costs. Consequently, there is a clear need for simplified models and design rules in order to achieve reasonable costs. This paper will describe the results obtained from a 2D finite element model which has been calibrated by means of a 3D model and experimental data obtained at culverts that belong to the high-speed railway line that links the two towns of Segovia and Valladolid in Spain
The development of an improved railroad-highway grade crossing risk factor. Executive summry report.
Resumo:
Ohio Department of Transportation, Columbus
Resumo:
Ohio Department of Transportation, Columbus
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
Federal Highway Administration, Office of Research, Washington, D.C.
Resumo:
Mode of access: Internet.