940 resultados para Raft Polymerization
Resumo:
Amphiphilic supramolecular miktoarm star copolymers linked by ionic bonds with controlled molecular weight and low polydispersity have been successfully synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization using an ion-bonded macromolecular RAFT agent (macro-RAFT agent). Firstly, a new tetrafunctional initiator, dimethyl 4,6-bis(bromomethyl)-isophthalate, was synthesized and used as an initiator for atom transfer radical polymerization (ATRP) of styrene to form polystyrene (PSt) containing two ester groups at the middle of polymer chain. Then, the ester groups were converted into tertiary amino groups and the ion-bonded supramolecular macro-RAFT agent was obtained through the interaction between the tertiary amino group and 2-dodecylsulfanylthiocarbonylsulfanyl-2-methyl propionic acid (DMP). Finally, ion-bonded amphiphilic miktoarm star copolymer, (PSt)(2)-poly(N-isopropyl-acrylamide)(2), was prepared by RAFT polymerization of N-isopropylacrylamide (NIPAM) in the presence of the supramolecular macro-RAFT agent. The polymerization kinetics was investigated and the molecular weight and the architecture of the resulting star polymers were characterized by means of H-1-NMR, FTIR, and GPC techniques. (c) 2008 Wiley Periodicals, Inc.
Resumo:
A novel fluorescent dye labeled H-shaped block copolymer, (PMMA-Fluor-PS)(2)-PEO-(PS-Fluor-PMMA)(2), is synthesized by the combination of atom transfer radical polymerization (ATRP) and anionic polymerization (AP). To obtain the designated structure of the copolymer, a macroinitiator, 2,2-dichloro acetyl-PEO-2,2-dichloro acetyl (DCA-PEO-DCA), was prepared from DCAC and poly(ethylene oxide). The copolymer was characterized by H-1 NMR, GPC and fluorescence spectroscopy.
Resumo:
Reversible addition-fragmentation chain transfer (RAFT) mediated radical polymerizations of allyl methacrylate and undecenyl methacrylate, compounds containing two types of vinyl groups with different reactivities, were investigated to provide hyperbranched polymers. The RAFT agent benzyl dithiobenzoate was demonstrated to be an appropriate chain-transfer agent to inhibit crosslinking and obtain polymers with moderate-to-high conversions. The polymerization of allyl methacrylate led to a polymer without branches but with five- or six-membered rings. However, poly(undecenyl methacrylate) showed an indication of branching rather than intramolecular cycles. The hyperbranched structure of poly(undecenyl methacrylate) was confirmed by a combination of H-1, C-13, H-1-H-1 correlation spectroscopy, and distortionless enhancement by polarization transfer 135 NMR spectra. The branching topology of the polymers was controlled by the variation of the reaction temperature, chain-transfer-agent concentration, and monomer conversion. The significantly lower inherent viscosities of the resulting polymers, compared with those of linear analogues, demonstrated their compact structure,
Resumo:
The reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylonitrile (AN) mediated by 2-cyanoprop-2-yl dithiobenzoate was first applied to synthesize polyacrylonitrile (PAN) with a high molecular weight up to 32,800 and a polydispersity index as low as 1.29. The key to success was ascribed to the optimization of the experimental conditions to increase the fragmentation reaction efficiency of the intermediate radical. In accordance with the atom transfer radical polymerization of AN, ethylene carbonate was also a better solvent candidate for providing higher controlled/living RAFT polymerization behaviors than dimethylformamide and dimethyl sulfoxide. The various experimental parameters, including the temperature, the molar ratio of dithiobenzoate to the initiator, the molar ratio of the monomer to dithiobenzoate, the monomer concentration, and the addition of the comonomer, were varied to improve the control of the molecular weight and polydispersity index. The molecular weights of PANS were validated by gel permeation chromatography along with a universal calibration procedure and intrinsic viscosity measurements. H-1 NMR analysis confirmed the high chain-end functionality of the resultant polymers.
Resumo:
Reversible addition-fragmentation chain transfer polymerization has been successfully applied to polymerize acrylonitrile with dibenzyl trithiocarbonate as the chain-transfer agent. The key to success is ascribed to the improvement of the interchange frequency between dormant and active species through the reduction of the activation energy for the fragmentation of the intermediate. The influence of several experimental parameters, such as the molar ratio of the chain-transfer agent to the initiator [azobis(isobutyronitrile)], the molar ratio of the monomer to the chain-transfer agent, and the monomer concentration, on the polymerization kinetics and the molecular weight as well as the polydispersity has been investigated in detail. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and H-1 NMR analyses have confirmed the chain-end functionality of the resultant polymer.
Resumo:
While polymers with different functional groups along the backbone have intensively been investigated, there is still a challenge in orthogonal functionalization of the end groups. Such well-defined systems are interesting for the preparation of multiblock (co) polymers or polymer networks, for bio-conjugation or as model systems for examining the end group separation of isolated polymer chains. rnHere, Reversible Addition Fragmentation Chain Transfer (RAFT) polymerization was employed as method to investigate improved techniques for an a, w end group functionalization. RAFT produces polymers terminated in an R group and a dithioester-Z group, where R and Z stem from a suitable chain transfer agent (CTA). rnFor alpha end group functionalization, a CTA with an activated pentafluorophenyl (PFP) ester R group was designed and used for the polymerization of various methacrylate monomers, N-isopropylacrylamide and styrene yielding polymers with a PFP ester as a end group. This allowed the introduction of inert propyl amides, of light responsive diazo compounds, of the dyes NBD, Texas Red, or Oregon Green, of the hormone thyroxin and allowed the formation of multiblocks or peptide conjugates. rnFor w end group functionalization, problems of other techniques were overcome through an aminolysis of the dithioester in the presence of a functional methane thiosulfonate (MTS), yielding functional disulfides. These disulfides were stable under ambient conditions and could be cleaved on demand. Using MTS chemistry, terminal methyl disulfides (enabling self-assembly on planar gold surfaces and ligand substitution on gold and semiconductor nanoparticles), butynyl disulfide end groups (allowing the “clicking” of the polymers onto azide functionalized surfaces and the selective removal through reduction), the bio-target biotin, and the fluorescent dye Texas Red were introduced into polymers. rnThe alpha PFP amidation could be performed under mild conditions, without substantial loss of DTE. This way, a step-wise synthesis produced polymers with two functional end groups in very high yields. rnAs examples, polymers with an anchor group for both gold nanoparticles (AuNP) and CdSe / ZnS semi-conductor nanoparticles (QD) and with a fluorescent dye end group were synthesized. They allowed a NP decoration and enabled an energy transfer from QD to dye or from dye to AuNP. Water-soluble polymers were prepared with two different bio-target end groups, each capable of selectively recognizing and binding a certain protein. The immobilization of protein-polymer-protein layers on planar gold surfaces was monitored by surface plasmon resonance.Introducing two different fluorescent dye end groups enabled an energy transfer between the end groups of isolated polymer chains and created the possibility to monitor the behavior of single polymer chains during a chain collapse. rnThe versatility of the synthetic technique is very promising for applications beyond this work.
Resumo:
Block copolymers have become an integral part of the preparation of complex architectures through self-assembly. The use of reversible addition-fragmentation chain transfer (RAFT) allows blocks ranging from functional to nonfunctional polymers to be made with predictable molecular weight distributions. This article models block formation by varying many of the kinetic parameters. The simulations provide insight into the overall polydispersities (PDIs) that will be obtained when the chain-transfer constants in the main equilibrium steps are varied from 100 to 0.5. When the first dormant block [polymer-S-C(Z)=S] has a PDI of 1 and the second propagating radical has a low reactivity to the RAFT moiety, the overall PDI will be greater than 1 and dependent on the weight fraction of each block. When the first block has a PDI of 2 and the second propagating radical has a low reactivity to the RAFT moiety, the PDI will decrease to around 1.5 because of random coupling of two broad distributions. It is also shown how we can in principle use only one RAFT agent to obtain block copolymers with any desired molecular weight distribution. We can accomplish this by maintaining the monomer concentration at a constant level in the reactor over the course of the reaction. (c) 2005 Wiley Periodicals, Inc.
Resumo:
The use of phenyldithioacetic acid (PDA) in homopolymerizations of styrene or methyl acrylate produced only a small fraction of chains with dithioester end groups. The polymerizations using 1-phenylentyl phenyldithioacetate (PEPDTA) and PDA in the same reaction showed that PDA had little or no influence on the rate or molecular weight distribution even when a 1:1 ratio is used. The mechanistic pathway for the polymerizations in the presence of PDA seemed to be different for each monomer. Styrene favors addition of styrene to PDA via a Markovnikov type addition to form a reactive RAFT agent. The polymer was shown by double detection SEC to contain dithioester end groups over the whole distribution. This polymer was then used in a chain extension experiment and the M-n was close to theory. A unique feature of this work was that PDA could be used to form a RAFT agent in situ by heating a mixture of styrene and PDA for 24 h at 70 degrees C and then polymerizing in the presence of AIBN to give a linear increase in Mn and low values of PDI (< 1.14). In the case of the polymerization of MA with PDA, the mechanism was proposed to be via degradative chain transfer. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Living radical polymerization has allowed complex polymer architectures to be synthesized in bulk, solution, and water. The most versatile of these techniques is reversible addition-fragmentation chain transfer (RAFT), which allows a wide range of functional and nonfunctional polymers to be made with predictable molecular weight distributions (MWDs), ranging from very narrow to quite broad. The great complexity of the RAFT mechanism and how the kinetic parameters affect the rate of polymerization and MWD are not obvious. Therefore, the aim of this article is to provide useful insights into the important kinetic parameters that control the rate of polymerization and the evolution of the MWD with conversion. We discuss how a change in the chain-transfer constant can affect the evolution of the MWD. It is shown how we can, in principle, use only one RAFT agent to obtain a poly-mer with any MWD. Retardation and inhibition are discussed in terms of (1) the leaving R group reactivity and (2) the intermediate radical termination model versus the slow fragmentation model. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Controlled polymerization of 2-chloro-1,3-butadiene using reversible addition–fragmentation chain transfer (RAFT) polymerization has been demonstrated for the first time. 2-Chloro-1,3-butadiene, more commonly known as chloroprene, has significant industrial relevance as a crosslinked rubber, with uses ranging from adhesives to integral automotive components. However, problems surrounding the inherent toxicity of the lifecycle of the thiourea-vulcanized rubber have led to the need for control over the synthesis of poly(2-chloro-1,3-butadiene). To this end, four chain transfer agents in two different solvents have been trialed and the kinetics are discussed. 2-Cyano-2-propylbenzodithioate (CPD) is shown to polymerize 2-chloro-1,3-butadiene in THF, using AIBN as an initiator, with complete control over the target molecular weight, producing polymers with low polydispersities (Mw/Mn < 1.25 in all cases).
Resumo:
Poly(styrene)-block-poly(ethylene oxide) copolymers synthesized via the combination of reversible addition fragmentation chain transfer (RAFT) polymerization and hetero Diels–Alder (HDA) cycloaddition can be cleaved in the solid state by a retro-HDA reaction occurring at 90 °C. Nanoporous films can be prepared from these polymers using a simple heating and washing procedure.
Resumo:
We introduce the design of a thermoresponsive nanoparticle via sacrificial micelle formation based on supramolecular host–guest chemistry. Reversible addition–fragmentation chain transfer (RAFT) polymerization was employed to synthesize well-defined polymer blocks of poly(N,N-dimethylacrylamide) (poly(DMAAm)) (Mn,SEC = 10 700 g mol–1, Đ = 1.3) and poly(N-isopropylacrylamide) (poly(NiPAAm)) (Mn,SEC = 39 700 g mol–1, Đ = 1.2), carrying supramolecular recognition units at the chain termini. Further, 2-methoxy-6-methylbenzaldehyde moieties (photoenols, PE) were statistically incorporated into the backbone of the poly(NiPAAm) block as photoactive cross-linking units. Host–guest interactions of adamantane (Ada) (at the terminus of the poly(NiPAAm/PE) chain) and β-cyclodextrin (CD) (attached to the poly(DMAAm chain end) result in a supramolecular diblock copolymer. In aqueous solution, the diblock copolymer undergoes micellization when heated above the lower critical solution temperature (LCST) of the thermoresponsive poly(NiPAAm/PE) chain, forming the core of the micelle. Via the addition of a 4-arm maleimide cross-linker and irradiation with UV light, the micelle is cross-linked in its core via the photoinduced Diels–Alder reaction of maleimide and PE units. The adamantyl–cyclodextrin linkage is subsequently cleaved by the destruction of the β-CD, affording narrowly distributed thermoresponsive nanoparticles with a trigger temperature close to 30 °C. Polymer chain analysis was performed via size exclusion chromatography (SEC), nuclear magnetic resonance (NMR) spectroscopy, and dynamic light scattering (DLS). The size and thermoresponsive behavior of the micelles and nanoparticles were investigated via DLS as well as atomic force microscopy (AFM).
Resumo:
The biodistribution of micelles with and without folic acid targeting ligands were studied using a block copolymer consisting of acrylic acid (AA) and polyethylene glycol methyl ether acrylate (PEGMEA) blocks. The polymers were prepared using RAFT polymerization in the presence of a folic acid functionalized RAFT agent. Oxoplatin was conjugated onto the acrylic acid block to form amphiphilic polymers which, when diluted in water, formed stable micelles. In order to probe the in vivo stability, a selection of micelles were cross-linked using 1,8-diamino octane. The sizes of the micelles used in this study range between 75 and 200 nm, with both spherical and worm-like conformation. The effects of cross-linking, folate conjugation and different conformation on the biodistribution were studied in female nude mice (BALB/c) following intravenous injection into the tail vein. Using optical imaging to monitor the fluorophore-labeled polymer, the in vivo biodistribution of the micelles was monitored over a 48 h time-course after which the organs were removed and evaluated ex vivo. These experiments showed that both cross-linking and conjugation with folic acid led to increased fluorescence intensities in the organs, especially in the liver and kidneys, while micelles that are not conjugated with folate and not cross-linked are cleared rapidly from the body. Higher accumulation in the spleen, liver, and kidneys was also observed for micelles with worm-like shapes compared to the spherical micelles. While the various factors of cross-linking, micelle shape, and conjugation with folic acid all contribute separately to prolong the circulation time of the micelle, optimization of these parameters for drug delivery devices could potentially overcome adverse effects such as liver and kidney toxicity.
Resumo:
Polymer protected gold nanoparticles have successfully been synthesized by both "grafting-from" and "grafting-to" techniques. The synthesis methods of the gold particles were systematically studied. Two chemically different homopolymers were used to protect gold particles: thermo-responsive poly(N-isopropylacrylamide), PNIPAM, and polystyrene, PS. Both polymers were synthesized by using a controlled/living radical polymerization process, reversible addition-fragmentation chain transfer (RAFT) polymerization, to obtain monodisperse polymers of various molar masses and carrying dithiobenzoate end groups. Hence, particles protected either with PNIPAM, PNIPAM-AuNPs, or with a mixture of two polymers, PNIPAM/PS-AuNPs (i.e., amphiphilic gold nanoparticles), were prepared. The particles contain monodisperse polymer shells, though the cores are somewhat polydisperse. Aqueous PNIPAM-AuNPs prepared using a "grafting-from" technique, show thermo-responsive properties derived from the tethered PNIPAM chains. For PNIPAM-AuNPs prepared using a "grafting-to" technique, two-phase transitions of PNIPAM were observed in the microcalorimetric studies of the aqueous solutions. The first transition with a sharp and narrow endothermic peak occurs at lower temperature, and the second one with a broader peak at higher temperature. In the first transition PNIPAM segments show much higher cooperativity than in the second one. The observations are tentatively rationalized by assuming that the PNIPAM brush can be subdivided into two zones, an inner and an outer one. In the inner zone, the PNIPAM segments are close to the gold surface, densely packed, less hydrated, and undergo the first transition. In the outer zone, on the other hand, the PNIPAM segments are looser and more hydrated, adopt a restricted random coil conformation, and show a phase transition, which is dependent on both particle concentration and the chemical nature of the end groups of the PNIPAM chains. Monolayers of the amphiphilic gold nanoparticles at the air-water interface show several characteristic regions upon compression in a Langmuir trough at room temperature. These can be attributed to the polymer conformational transitions from a pancake to a brush. Also, the compression isotherms show temperature dependence due to the thermo-responsive properties of the tethered PNIPAM chains. The films were successfully deposited on substrates by Langmuir-Blodgett technique. The sessile drop contact angle measurements conducted on both sides of the monolayer deposited at room temperature reveal two slightly different contact angles, that may indicate phase separation between the tethered PNIPAM and PS chains on the gold core. The optical properties of amphiphilic gold nanoparticles were studied both in situ at the air-water interface and on the deposited films. The in situ SPR band of the monolayer shows a blue shift with compression, while a red shift with the deposition cycle occurs in the deposited films. The blue shift is compression-induced and closely related to the conformational change of the tethered PNIPAM chains, which may cause a decrease in the polarity of the local environment of the gold cores. The red shift in the deposited films is due to a weak interparticle coupling between adjacent particles. Temperature effects on the SPR band in both cases were also investigated. In the in situ case, at a constant surface pressure, an increase in temperature leads to a red shift in the SPR, likely due to the shrinking of the tethered PNIPAM chains, as well as to a slight decrease of the distance between the adjacent particles resulting in an increase in the interparticle coupling. However, in the case of the deposited films, the SPR band red-shifts with the deposition cycles more at a high temperature than at a low temperature. This is because the compressibility of the polymer coated gold nanoparticles at a high temperature leads to a smaller interparticle distance, resulting in an increase of the interparticle coupling in the deposited multilayers.