908 resultados para Radiação micro-ondas
Resumo:
This paper describes a three-week mini-project for an Experimental Organic Chemistry course. The activities include N-C cross-coupling synthesis of N-(4-methoxyphenyl) benzamide in an adapted microwave oven by a copper catalyst (CuI). Abilities and concepts normally present in practical organic chemistry courses are covered: use of balances, volumetric glassware, separation of mixtures (liquid-liquid extraction and filtration), chromatographic techniques, melting point determination and stoichiometric calculations.
Resumo:
This work reports a practical case based on the use of microwave-assisted derivatization and GC-MS for the analysis of glucose. Using two different methods for derivatization, one reference compound and the calculated dipole moment, all the isomers of glucose were identified. Identification was corroborated for the assignment of structures using the mass spectra. With this work, students are expected to associate different types of information to solve the complex problem of the analysis of glucose.
Resumo:
A method based on microwave-induced combustion (MIC) was applied for the decomposition of different types of edible seaweed (Nori, Hijiki and Wakame) for subsequent determination of bromine and iodine by inductively coupled plasma mass spectrometry (ICP-MS). Decomposition of 500 mg of each sample was achieved in less than 30 min. A single and diluted solution (150 mmol L-1 (NH4)2CO3) was used for the absorption of both analytes and a reflux step of 5 min was applied to improve analyte recoveries. Accuracy was evaluated using certified reference materials and agreement was between 103 and 108% for both elements.
Resumo:
Commercial and synthetic mesoporous aluminas impregnated with potassium carbonate were characterized by X-ray diffraction (XRD), nitrogen physisorption, infrared spectroscopy and 27Al MAS NMR. The activities in the transesterification reaction of sunflower oil with methanol for biodiesel production were evaluated. 27Al MAS NMR spectra evidenced the presence of AlIV and AlVI in the samples, and also of AlV sites in the mesoporous synthesized alumina, which disappeared after impregnation with potassium salt followed by calcination. All aluminas containing potassium were active for biodiesel production from sunflower seed oil, with high conversions by both conventional heating and microwave irradiation.
Resumo:
This work presents the biofuel production results of the esterification of fatty acids (C12-C18) and high-acid-content waste vegetable oils from different soap stocks (soybean, palm, and coconut) with methanol, ethanol, and butanol by acid catalysis. We used Amberlyst-35 (A35) sulfonic resin as a heterogeneous acid catalyst and p-toluenesulfonic acid as a homogeneous catalyst for comparison. Both the heterogeneous (A35) and homogeneous (p-toluenesulfonic acid) reactions were performed with 5% w/w of catalyst. The final products were analyzed by proton nuclear magnetic resonance (1H NMR). The homogeneous catalyzed esterification of fatty acids with methanol, ethanol, and butanol produced esters with yields higher than 90%. In the reaction with fatty acids and methanol catalyzed by A35, the best results were achieved with lauric acid and methanol, with a yield of 97%. An increase in the hydrocarbon chain decreased the rate of conversion and yield for stearic acid with methanol, which was 90%. Maximum biodiesel production was achieved from coconut and soybean soap stocks and methanol (96%-98%), which showed conversions very close to those obtained from their respective fatty acids. Microwave irradiation reduced the reaction time from 6 to 1 h in the esterification reaction of fatty acids with butanol.
Resumo:
O objetivo deste trabalho foi avaliar o efeito do tratamento térmico sob baixa umidade (TTBU) aplicado por forno micro-ondas sobre as propriedades estruturais e funcionais do amido de batata-doce e compará-las com as propriedades de amido tratado pelo método convencional. O amido extraído dessa raiz foi submetido à modificação física, nas umidades de 25 e 35%, em forno convencional (90 °C/16 horas) e em microondas (35 a 90 °C/1 hora). O tratamento térmico sob baixa umidade resultou em alterações significativas no teor de amilose e em características como a cristalinidade, suscetibilidade enzimática, fator de expansão e propriedades de pasta. Tais variações evidenciam modificações na estrutura granular interna dos amidos, tanto em áreas cristalinas como amorfas do grânulo. As alterações conferidas pelo TTBU foram variáveis com o tipo de tratamento térmico e com o teor de umidade. A umidade das amostras também foi determinante na modificação da maioria das características do amido, como maior digestibilidade enzimática e redução da expansão, menores picos de viscosidade e quebras de viscosidade, independentemente do tipo de tratamento térmico aplicado. Considerando-se o tipo e a intensidade da modificação física do amido tratado pelo método convencional como referência, a utilização da energia de micro-ondas para esse mesmo fim precisa ser melhor estudada.
Resumo:
A análise histopatológica de tecido ósseo exige uma etapa de descalcificação. O método usual consiste na imersão das amostras em ácidos, mas para além de provocarem danos tecidulares, o processo é prolongado. A utilização de micro-ondas acelera a descalcificação, mas não deve comprometer a imagem microscópica. Objetivo: Diminuir a duração da descalcificação, mantendo a qualidade da imagem microscópica. Metodologia: Foram testadas amostras de osso compacto e esponjoso. Realizou-se a descalcificação pelo método convencional e pelo método em micro-ondas, através da adaptação de um protocolo conhecido. Utilizou-se ácido nítrico a 5% e 10%. Resultados: Nos fragmentos de maiores dimensões, após 4 horas com ácido nítrico a 10% em micro-ondas, não se conseguiu uma descalcificação completa, apesar da imagem histológica ser razoável. Nos fragmentos de osso esponjoso, verificou-se uma redução de cerca de 25 horas relativamente ao método convencional. Nas biópsias, houve uma redução de aproximadamente 10 horas, utilizando ácido nítrico a 5%. Com ácido nítrico a 10% houve destruição tecidular. Nos casos em que se obteve uma descalcificação completa, a imagem microscópica apresenta fraca qualidade. Conclusão: A utilização de micro-ondas com ácido nítrico a 5%/10%, aplicando o protocolo deste estudo, reduz a duração da descalcificação, mas compromete a imagem microscópica.
Resumo:
The planar circuits are structures that increasingly attracting the attention of researchers, due the good performance and capacity to integrate with other devices, in the prototyping of systems for transmitting and receiving signals in the microwave range. In this context, the study and development of new techniques for analysis of these devices have significantly contributed in the design of structures with excellent performance and high reliability. In this work, the full-wave method based on the concept of electromagnetic waves and the principle of reflection and transmission of waves at an interface, Wave Concept Iterative Procedure (WCIP), or iterative method of waves is described as a tool with high precision study microwave planar circuits. The proposed method is applied to the characterization of planar filters, microstrip antennas and frequency selective surfaces. Prototype devices were built and the experimental results confirmed the proposed mathematical model. The results were also compared with simulated results by Ansoft HFSS, observing a good agreement between them.
Resumo:
The green bean has organoleptic and nutritional characteristics that make it an important food source in tropical regions such as the Northeast of Brazil. It is a cheap source of protein and important for nutrition of rural population contributing significantly in subsistence farming of the families from Brazil s northeast. It is consumed in entire region and together with the dry meat and other products composes the menu of typical restaurants, being characterized as an important product for economy of Northeast. The green bean is consumed freshly harvested and has short cycle, being characterized as a very perishable food, which hampers your market. The drying method is an alternative to increase the lifetime and provide a reduction volume of this product making easier your transportation and storage. However is necessary to search ways of drying which keep the product quality not only from the nutritional standpoint but also organoleptic. Some characteristics may change with the drying process such as the coloring, the rehydration capacity and the grains cooking time. The decrease of drying time or of exposure of the grains to high temperature minimizes the effects related with the product quality loss. Among the techniques used to reduce the drying time and improve some characteristics of the product, stands out the osmotic dehydration, widely used in combined processes such as the pretreatment in drying food. Currently the use of the microwaves has been considered an alternative for drying food. The microwave energy generates heat inside of materials processed and the heating is practically instantaneous, resulting in shorter processing times and product quality higher to that obtained by conventional methods. Considering the importance of the green beans for the Northeast region, the wastefulness of production due to seasonality of the crop and your high perishability, the proposal of this thesis is the study of drying grain by microwaves with and without osmotic pretreatment, focusing on the search of conditions of processes which favor the rehydration of the product preserving your organoleptic characteristics. Based on the analysis of the results of osmotic dehydration and dielectric properties was defined the operating condition to be used in pretreatment of the green bean, with osmotic concentration in saline solution containing 12,5% of sodium chloride, at 40°C for 20 minutes. The drying of green bean by microwave was performed with and without osmotic pretreatment on the optimized condition. The osmotic predehydration favored the additional drying, reducing the process time. The rehydration of dehydrated green bean with and without osmotic pretreatment was accomplished in different temperature conditions and immersion time according to a factorial design 22, with 3 repetitions at the central point. According to results the better condition was obtained with the osmotically pretreated bean and rehydrated at a temperature of 60°C for 90 minutes. Sensory analysis was performed comparing the sample of the green bean in natura and rehydrated in optimized conditions, with and without osmotic pretreatment. All samples showed a good acceptance rate regarding the analyzed attributes (appearance, texture, color, odor and taste), with all values above 70%. Is possible conclude that the drying of green bean by microwave with osmotic pretreatment is feasible both in respect to technical aspects and rehydration rates and sensory quality of the product
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective: To evaluate the variations of temperature in 2 models of domestic micro-wave ovens, single emission (F 1) and dual emission of waves (F 2), to investigate areas of higher and lower intensity of the electromagnetic field. Materials and methods: A beaker containing water (60mL, 26°C) was irradiated into each of 5 positions (front - P 1; right - P 2; posterior - P 3; left - P 4; central - P 5) within each oven (900W/ 2min). To evaluate the effectiveness of disinfection in F 2, Bacillus subtilis suspension was irradiated in each of the 5 positions for 2, 4 and 6minutes. Data were analyzed by Kruskal-Wallis and nonparametric multiple comparisons at 5% significance level. Results: 84.80°C (F 1) and 92.01°C (F 2) were mean levels of temperature. For F 1, the positions P 1, P 2, P 3 and P 5 showed similar values among them and upper than P 4, while for F 2, the positions P 1, P 2 and P 4 were similar among them and upper than P 3 and P 5. Kruskal-Wallis test found significant differences between positions and models of ovens (p<0.05). It was observed that P 2 promoted bacterial death from 4min of irradiation, while the other positions promoted disinfection at 6min of irradiation. Conclusion: The protocols of position and time specified for the various procedures in microwave ovens can be different according to the characteristics of each device due to the electromagnetic field heterogeneity. © 2011 Sociedade Portuguesa de Estomatologia e Medicina Dentária.
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)