946 resultados para ROOT DENTIN
Resumo:
An increase in dentin roughness, associated with surface composition, contributes to bacterial adherence in recontaminations. Surface roughness is also important for micromechanical interlocking of dental materials to dentin, and understanding the characteristics of the surface is essential to obtain the adhesion of root canal sealers that have different physico-chemical characteristics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose: To evaluate the effect of the insertion technique for resin cement and mechanical cycling on the bond strength between fiber posts and root dentin.Materials and Methods: Sixty-four single-rooted bovine teeth were endodontically prepared to receive glass-fiber posts. The insertion of cement into the root canal was performed using one of the following techniques: POS, insertion with the post; LEN, the use of a lentulo-type drill; EXP, insertion with a straight-tip explorer; or CEN, the use of a Centrix syringe. Half of the specimens were mechanically cycled. All specimens were sectioned into slices of 1.8 mm for the push-out test and 0.5 mm for analysis of the cement layer quality.Results: The insertion technique affected the interaction between factors (bond strength and mechanical cycling; p < 0.0001). Insertion of the Centrix syringe after mechanical cycling showed the highest bond values (13.6 +/- 3.2 MPa). Group-to-group comparisons for baseline and cycled conditions indicated that mechanical cycling significantly influenced the bond strength (p < 0.0001) of the POS and CEN groups. The quality of the cement layer did not differ between the techniques when evaluated in the middle (p = 0.0612) and cervical (p = 0.1119) regions, but did differ in the apical region (p = 0.0097), where the CEN group had better layer quality for the two conditions tested (baseline and cycled).Conclusion: The use of the Centrix syringe improved the homogeneity of the cement layer, reducing the defects in the layer and increasing adhesive strength values to dentin, even after mechanical cycling.
Resumo:
This study evaluated the effects of mechanical cycling on resin push-out bond strength to root dentin, using two strategies for fiber post cementation. Forty bovine roots were embedded in acrylic resin after root canal preparation using a custom drill of the fiber post system. The fiber posts were cemented into root canals using two different strategies (N = 20): a conventional adhesive approach using a three-step etch-and-rinse adhesive system combined with a conventional resin cement (ScotchBond Multi Purpose Plus + RelyX ARC ), or a simplified adhesive approach using a self-adhesive resin cement (RelyX U100). The core was built up with composite resin and half of the specimens from each cementation strategy were submitted to mechanical cycling (45 degree angle; 37 degrees C; 88 N; 4 Hz; 700,000 cycles). Each specimen was cross-sectioned and the disk specimens were pushed-out. The means from every group (n = 10) were statistically analyzed using a two-way ANOVA and a Tukey test (P = 0.05). The cementation strategy affected the push-out results (P < 0.001), while mechanical cycling did not (P = 0.3716). The simplified approach (a self-adhesive resin cement) had better bond performance despite the conditioning. The self-adhesive resin cement appears to be a good option for post cementation. Further trials are needed to confirm these results.
Resumo:
Purpose: To evaluate the effect of a 1.23% acidulated phosphate fluoride (APF) gel combined with CO2 laser in protecting carious root dentin against further cariogenic challenges. Methods: After a 7-day lead-in period, 12 volunteers wore an intraoral palatal device containing four carious root dentin slabs, treated with APF and APF+CO2 or placebo and placebo+CO2. After a 14-day wash-out period, volunteers were crossed-over to the other treatment arm. During both intraoral phases, specimens were submitted to cariogenic challenges and then evaluated for cross-sectional Knoop microhardness. Results: Two-way ANOVA demonstrated that there was significant effect for both main factors: CO2 laser irradiation (P< 0.0001) and gel treatment (P< 0.0001), and that there was no interaction between them (P= 0.4706). Protection of carious root dentin against further cariogenic challenges may be provided by APF fluoride gel and CO2 laser, but no additive benefit was found by combining such strategies. (Am J Dent 2012;25:114-117).
Resumo:
Objective: The aim of this study was to evaluate, through a crossover 2 x 2 in situ trial, the effect of a desensitizing dentifrice associated with CO2 laser irradiation to control the permeability of eroded root dentin. Background data: Facing the increased prevalence of erosive lesion and the need for preventive means to control painful symptoms related to them. Methods: Eighty slabs of bovine root dentin were subjected to initial erosive challenge (citric acid 0.3%, 2 h), followed by a remineralizing period in artificial saliva (24 h). Specimens were then divided according to dentin treatment: desensitizing dentifrice, desensitizing dentifrice + CO2 laser, fluoride anticavity dentifrice. and fluoride anticavity dentifrice + CO2 laser. After a 2-day lead-in period, 10 volunteers wore an intraoral palatal appliance containing four root dentin slabs, in two phases of 5 days each. During the intraoral phase, one side of the appliance was immersed in 0.3% citric acid, and the opposite side was immersed in deionized water, four times a day. One hour after the immersions, all specimens were brushed with dentifrice slurry provided by the researcher. After a 7-day washout period, volunteers were crossed over on the different dentifrice group. Each phase having been completed, the specimens were evaluated for permeability through an optical microscope. Results: Data were analyzed using ANOVA and no significant difference (p = 0.272) was found between the surface treatments performed on bovine root dentin. Conclusions: It can be concluded that fluoride anticavity or desensitizing dentifrice, regardless of the association with the CO2 laser irradiation, was able to control the permeability of eroded root dentin.
Resumo:
The effect of solutions of 0.2% chitosan, 15% EDTA and 10% citric acid on the microhardness of root dentin was evaluated comparatively in this study. Thirteen sound human maxillary central incisors were selected and decoronated at the cementoenamel junction. Ten roots were set into rapid polymerization acrylic resin and the root/resin block was fitted to the cutting machine to obtain slices from the cervical third. The first slice was discarded and the second slice was divided into four quadrants. Each quadrant was used to construct a sample, so that 4 specimens were obtained from each root slice, being one for each chelating solution to be tested: 15% EDTA, 10% citric acid, 0.2% chitosan and distilled water (control). The specimens were exposed to 50 μL of the solution for 5 min, and then washed in distilled water. A microhardness tester (Knoop hardness) with a 10 g load was used for 15 s. Data were analyzed statistically by one-way ANOVA and Tukey-Kramer test (α=0.05). The other 3 roots had the canals instrumented and irrigated at the end of the biomechanical preparation with the test solutions, and then examined by scanning electron microscopy (SEM) for qualitative analysis. All solutions reduced the microhardness of root dentin in a way that was statistically similar to each other (p>0.05) but significantly different from the control (p>0.05). The SEM micrographs showed that the three solutions removed smear layer from the middle third of the root canal. In conclusion, 0.2% chitosan, 15% EDTA and 10% citric acid showed similar effects in reducing dentin microhardness.
Resumo:
Purpose: To investigate the effect of airborne-particle abrasion or diamond bur preparation as pretreatment steps of non-carious cervical root dentin regarding substance loss and bond strength. Methods: 45 dentin specimens produced from crowns of extracted human incisors by grinding the labial surfaces with silicon carbide papers (control) were treated with one of three adhesive systems (Group 1A-C; A: OptiBond FL, B: Clearfil SE Bond, or C: Scotchbond Universal; n=15/adhesive system). Another 135 dentin specimens (n=15/group) produced from the labial, non-carious cervical root part of extracted human incisors were treated with one of the adhesive systems after either no pre-treatment (Group 2A-C), pre-treatment with airborne-particle abrasion (CoJet Prep and 50 µm aluminum oxide powder; Group 3A-C), or pre-treatment with diamond bur preparation (40 µm grit size; Group 4A-C). Substance loss caused by the pre-treatment was measured in Groups 3 and 4. After treatment with the adhesive systems, resin composite was applied and all specimens were stored (37°C, 100% humidity, 24 hours) until measurement of microshear bond strength (µSBS). Data were analyzed with a nonparametric ANOVA followed by Kruskal-Wallis and Wilcoxon rank sum tests (level of significance: alpha=0.05). Results: Overall substance loss was significantly lower in Group 3 (median: 19 µm) than in Group 4 (median: 113 µm; p<0.0001). There were no significant differences in µSBS between the adhesive systems (A-C) in Group 1, Group 3, and Group 4 (p>=0.133). In Group 2, OptiBond FL (Group 2A) and Clearfil SE Bond (Group 2B) yielded significantly higher µSBS than Scotchbond Universal (Group 2C; p<=0.032). For OptiBond FL and Clearfil SE Bond, there were no significant differences in µSBS between the ground crown dentin and the non-carious cervical root dentin regardless of any pre-treatment of the latter (both p=0.661). For Scotchbond Universal, the µSBS to non-carious cervical root dentin without pre-treatment was significantly lower than to ground crown dentin and to non-carious cervical root dentin pre-treated with airborne-particle abrasion or diamond bur preparation p<=0.014).
Resumo:
Aim: Based on the hypothesis the application of a low-viscosity hydrophobic resin coating improves the bond of all-in-one adhesive, the purpose of the study was to evaluate the bond strength of four adhesive systems to bovine root dentin using the push-out test method. Methods and Materials: The root canals of 32 bovine roots (16 mm) were prepared to a length of 12 mm using a FRC Postec Plus preparation drill. The specimens were allocated into four groups according to the adhesive system used: (Group 1) All-in-one Xeno III; (Group 2) All-in-one Xeno III+ScotchBond Multi-Purpose Plus Adhesive; (Group 3) Simplified Etch & Rinse One Step Plus; and (Group 4) Multi-Bottle Etch & Rinse All-Bond 2. A fiber-reinforced composite retention post was reproduced using an additional silicon impression and fabricated with DuoLink resin cement. The root specimens were treated with the selected adhesive systems, and the resin posts were luted in the canals with DuoLink resin cement. Each root specimen was cross sectioned into four samples (±1.8 mm in thickness), and the post sections were pushed-out to determine the bond strength to dentin. Results: Group 2 (2.9±1.2) was statistically higher than Group 1 (1.1±0.5) and Group 3 (1.1±0.5). Groups 1 and 3 showed no statistically significant difference while Group 4 (2.0±0.7) presented similar values (p>0.05) to Groups 1, 2, and 3 [(one-way analysis of variance (ANOVA)] and Tukey test, α=0.05). Conclusion: The hypothesis was accepted since the application of the additional layer of a low-viscosity bonding resin improved the bond of the all-in-one adhesive. Further studies must be conducted to evaluate the long-term bond.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study sought to evaluate the microhardness of root dentine adjacent to glass-ionomer and composite resin restorations after erosive challenge. A crossover study was performed in two phases of 4 consecutive days each. One hundred twelve bovine root dentine slabs were obtained, and standardized box-shaped cavities were prepared at center of each specimen. The prepared cavities were randomly restored with glass-ionomer cement or composite resin. The slabs were randomly assigned among 14 volunteers, which wore intraoral palatal device containing four restored root dentin slabs. Starting on the second day, half of the palatal acrylic devices were immersed extraorally in a lemonade-like carbonated soft drink for 90 s, four times daily for 3 days. Alter 3-day wash-out, dentine slabs restored with the alternative material were placed into palatal appliance and the volunteers started the second phase of this study. After erosive challenges. microhardness measurements were performed. Regardless of the restorative material employed, eroded specimens demonstrated lower microhardness value (p < 0.0001). At eroded condition examined in this study, dentine restored with glass-ionomer cement showed higher microhardness values (p < 0.0001). It may be concluded that the glass-ionomer cement decreases the progression of root dentine erosion at restoration margin. (C) 2010 Wiley Periodicals, Inc J Biomed Mater Res Part B Appl Biomater 93B 304-305, 2010
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective. The objective of this study was to evaluate the penetration of 2.5% NaOCl associated with 17.0% EDTA, 1.0% citric acid, and 1.0% peracetic acid into dentin tubules.Study design. The roots of 44 bovine incisors were cross-sectioned and 5-mm-long fragments were produced from their middle thirds. The specimens were instrumented with ProTaper hand files, stained in crystal violet, then sectioned mesiodistally. The buccal fragments were divided into 4 groups (n = 9) and subjected to 2 consecutive 10-minute immersion periods in one of the following acid solutions combined with 2.5% NaOCl: 17.0% EDTA (group 1), 1.0% citric acid (group 2), and 1.0% peracetic acid (group 3). Nine fragments were immersed in 2.5% NaOCl (group 4). The analysis of the penetration of NaOCl solutions into dentin was performed by measuring the depth of crystal violet stain that was bleached using a steromicroscope under x50 magnification. Statistical comparisons were carried out by Kruskal-Wallis and Dunn's tests at the 5% significance level.Results. Group 1 showed less penetration into dentin than group 4 (P < .05). No statistically significant differences were observed among groups 2, 3, and 4 (P > .05).Conclusions. Association of NaOCl with acid solutions did not increase its penetration depth into root dentin. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;112:e155-e159)