891 resultados para RNA isolation
Resumo:
This report details a reliable and efficient RNA extraction protocol for the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal (Gymnodiniales, Dinophyceae). The method typically gives yields of 500 mu g total RNA from 0.4 g wet weight of algae, and, in comparison to current protocols, it is technically simple and less time consuming. This method isolates high-quality, intact RNA from in vine cultured as well as host-isolated cells, as demonstrated by spectrophotometry, gel electrophoresis, and northern analysis. The total RNA obtained was suitable for reverse transcription and PCR amplification of Symbiodinium cDNAs. We have successfully applied our method to isolate total RNA from a different dinoflagellate, Amphidinium carterae Hulburt (Gymnodiniales, Dinophyceae), found in symbiotic association with marine invertebrates.
Resumo:
Tissues of the Australian native plant species Hakea actities (Proteaceae) contain numerous metabolites and structural compounds that hinder the isolation of nucleic acids. Separate RNA and genomic DNA extraction procedures were developed to isolate high quality nucleic acids from H. actities. Total RNA was extracted from leaves, roots and cluster roots of H. actities grown in low nutrient levels. Cluster root formation in H. actities only occurs when the plants are grown in low nutrient concentrations. However, under these conditions, nucleic acid extraction becomes increasingly difficult. The new procedures are faster than many of the published nucleic acid extraction protocols, and avoid the use of hazardous chemicals. The RNA extraction method was used successfully on another Australian species and a crop species, suggesting that the procedure is useful for molecular studies of a broad range of plants.
Resumo:
In this study we demonstrate RNA interference mediated knock-down of target gene expression in Echinococcus multilocularis primary cells on both the transcriptional and translational level. In addition, we report on an improved method for generating E. multilocularis primary cell mini-aggregates from in vitro cultivated metacestode vesicles, and on the cultivation of small numbers of small interfering RNA-transfected cells in vitro over an extended period of time. This allows assessments on the effects of RNA interference performed on Echinococcus primary cells with regard to growth, proliferation, differentiation of the parasite and the formation of novel metacestode vesicles in vitro.
Resumo:
Three U7 RNA-related sequences were isolated from mouse genomic DNA libraries. Only one of the sequences completely matches the published mouse U7 RNA sequence, whereas the other two apparently represent pseudogenes. The matching sequence represents a functional gene, as it is expressed after microinjection into Xenopus laevis oocytes. Sequence variations of the conserved cis-acting 5' and 3' elements of U RNA genes may partly explain the low abundance of U7 RNA.
Resumo:
The identification of cDNA clones from genomic regions known to contain human genes is usually the rate-limiting factor in positional cloning strategies. We demonstrate here that human genes present on yeast artificial chromosomes (YACs) are transcribed in yeast host cells. We have used the arbitrarily primed RNA (RAP) fingerprinting method to identify human-specific, transcribed sequences from YACs located in the 13q12 chromosome region. By comparing the RAP fingerprints generated using defined, arbitrary primers from various fragmented YACs, megaYACs, and host yeast, we were able to identify and map 20 products transcribed from the human YAC inserts. This method, therefore, permits the simultaneous isolation and mapping of novel expressed sequences directly from whole YACs.
Resumo:
Introduction. This protocol aims at preparing total RNA for gene expression analysis by Northern blots, RT-PCR and real-time quantitative PCR; cDNA isolation by RTPCR; and cDNA library construction. The principle, key advantages, starting plant material, time required for obtaining total RNA and expected results are presented. Materials and methods. This part describes the required materials and the 27 steps necessary for preparing RNA from peel and pulp fruit tissue: preparation of plant tissue powder, preparation of the complete RNA extraction buffer and isolation of RNA from ground banana fruit tissue. Results. Extraction of total RNA by the method described makes it possible to achieve electrophoresis under denatured conditions and in vitro reverse transcription. An example for Northern blot analysis is illustrated.
Resumo:
Bacteria phenotypically resembling members of the phylogenetically distinct planctomycete group of the domain Bacteria were isolated from postlarvae of the giant tiger prawn, Penaeus monodon. A selective medium designed in the light of planctomycete antibiotic resistance characteristics was used for this isolation. Planctomycetes were isolated from both healthy and monodon baculovirus-infected prawn postlarvae, The predominant colony type recovered from postlarvae regardless of viral infection status was nonpigmented. Other, less commonly observed types were pink or orange pigmented, A planctomycete-specific 16S rRNA-directed probe was designed and used to screen the isolates for their identity as planctomycetes prior to molecular phylogenetic characterization. 16S rRNA genes from nine prawn isolates together with two planctomycete reference strains (Planctomyces brasiliensis and Gemmata obscuriglobus) were sequenced and compared with reference sequences from the planctomycetes and other members of the domain Bacteria, Phylogenetic analyses and sequence signatures of the 16S rRNA genes demonstrated that the prawn isolates were members of the planctomycete group, Five representatives of the predominant nonpigmented colony type were members of the Pirellula group within the planctomycetes, as were three pink-pigmented colony type representatives. Homology values and tree topology indicated that representatives of the nonpigmented and pink-pigmented colony types formed two discrete clusters within the Pirellula group, not identical to any known Pirellula species, A sole representative of the orange colony type was a member of the Planctomyces group, virtually identical in 16S rDNA sequence to P. brasiliensis, and exhibited distinctive morphology.
Resumo:
A semi-nested polymerase chain reaction (PCR) was evaluated for detection of Japanese encephalitis (JE) virus in infected mosquitoes stored under simulated northern Australian summer conditions. The effect of silica gel, thymol, and a combination of the two on RNA stability and virus viability in dead mosquitoes were also examined. While JE virus RNA was relatively stable in mosquitoes held for up to 14 days after death, viable virus was not detected after day 1. Thymol vapor inhibited fungal contamination. Detection of single mosquitoes infected with JE virus in large pools of mosquitoes was also investigated. Single laboratory-infected mosquitoes were detected in pools of less than or equal to200 mosquitoes and in pools diluted to 0.2/100 and 0.1/100 mosquitoes, using the semi-nested PCR. However, the ability to detect live virus decreased as pool size increased. The semi-nested PCR proved more expensive than virus isolation for pools of 100 mosquitoes. However, the semi-nested PCR was faster and more economical using larger pools. Results indicate that surveillance of JE virus in mosquitoes using the semi-nested PCR is an alternative to monitoring seroconversions in sentinel pigs.
Resumo:
This paper reports the isolation of St. Louis encephalitis virus (SLEV) from a febrile human case suspected to be dengue, in São Pedro, São Paulo State. A MAC-ELISA done on the patient's acute and convalescent sera was inconclusive and hemagglutination inhibition test detected IgG antibody for flaviviruses. An indirect immunofluorescent assay done on the C6/36 cell culture inoculated with the acute serum was positive for flaviviruses but negative when tested with dengue monoclonal antibodies. RNA extracted from the infected cell culture supernatant was amplified by RT-PCR in the presence of NS5 universal flavivirus primers and directly sequenced. Results of BLAST search indicated that this sequence shares 93% nucleotide similarity with the sequence of SLEV (strain-MSI.7), confirmed by RT-PCR performed with SLEV specific primers. Since SLEV was identified as the cause of human disease, it is necessary to improve surveillance in order to achieve early detection of this agent in the state of São Paulo and in Brazil. This finding is also an alert to health professionals about the need for more complete clinical and epidemiological investigations of febrile illnesses as in the reported case. SLEV infections can be unrecognized or confused with other ones caused by an arbovirus, such as dengue.
Resumo:
INTRODUCTION: Prolonged survival of patients under HAART has resulted in new demands for assisted reproductive technologies. HIV serodiscordant couples wish to make use of assisted reproduction techniques in order to avoid viral transmission to the partner or to the newborn. It is therefore essential to test the effectiveness of techniques aimed at reducing HIV and HCV loads in infected semen using molecular biology tests. METHODS: After seminal analysis, semen samples from 20 coinfected patients were submitted to cell fractioning and isolation of motile spermatozoa by density gradient centrifugation and swim-up. HIV and HCV RNA detection tests were performed with RNA obtained from sperm, seminal plasma and total semen. RESULTS: In pre-washing semen, HIV RNA was detected in 100% of total semen samples, whereas HCV RNA was concomitantly amplified in only one specimen. Neither HIV nor HCV were detected either in the swim-up or in the post-washing semen fractions. CONCLUSIONS: Reduction of HIV and/or HCV shedding in semen by density gradient centrifugation followed by swim-up is an efficient method. These findings lead us to believe that, although semen is rarely found to contain HCV, semen processing is highly beneficial for HIV/HCV coinfected individuals.
Resumo:
After detecting the death of Howlers monkeys (genus Alouatta) and isolation of yellow fever virus (YFV) in Buri county, São Paulo, Brazil, an entomological research study in the field was started. A YFV strain was isolated from newborn Swiss mice and cultured cells of Aedes albopictus - C6/36, from a pool of six Haemagogus (Conopostegus) leucocelaenus (Hg. leucocelaenus) mosquitoes (Dyar & Shannon) collected at the study site. Virus RNA fragment was amplified by RT-PCR and sequenced. The MCC Tree generated showed that the isolated strain is related to the South American I genotype, in a monophyletic clade containing isolates from recent 2008-2010 epidemics and epizootics in Brazil. Statistical analysis commonly used were calculated to characterize the sample in relation to diversity and dominance and indicated a pattern of dominance of one or a few species. Hg. leucocelaenus was found infected in Rio Grande do Sul State as well. In São Paulo State, this is the first detection of YFV in Hg. leucocelaenus.
Resumo:
The isolation of the four Xenopus laevis vitellogenin genes has been completed by the purification from a DNA library of the B2 gene together with its flanking sequences. The overlapping DNA fragments analyzed cover 34 kilobases. The B2 gene which has a length of 17.5 kilobases was characterized by heteroduplex and R-loop mapping in the electron microscope and by in vitro transcription in a HeLa whole-cell extract. Its structural organization is compared with that of the closely related B1 gene. The mRNA-coding sequence of about 6 kilobases is interrupted 34 times in the B1 gene and 33 times in the B2 gene. Sequence homology between the two genes was not only found in exons. In addition, 54% of the intron sequences as well as 63% and 48.5% respectively of the 5' and 3' flanking sequences, show enough homology to form stable duplexes. These findings are compared with earlier results obtained with the two other closely related members of the vitellogenin gene family, the A1 and the A2 genes.
Resumo:
The aim of this study was to identify and isolate genes that are differentially expressed in four selected cotton (Gossypium hirsutum L.) genotypes contrasting according to their tolerance to water deficit. The genotypes studied were Siokra L-23, Stoneville 506, CS 50 and T-1521. Physiological, morphological and developmental changes that confer drought tolerance in plants must have a molecular genetic basis. To identify and isolate the genes, the mRNA Differential Display (DD) technique was used. Messenger RNAs differentially expressed during water deficit were identified, isolated, cloned and sequenced. The cloned transcript A12B15-5, a NADP(H) oxidase homologue, was up regulated only during the water deficit stress and only in Siokra L-23, a drought tolerant genotype. Ribonuclease protection assay confirmed that transcription.
Resumo:
BACKGROUND: Patients suffering from cutaneous leishmaniasis (CL) caused by New World Leishmania (Viannia) species are at high risk of developing mucosal (ML) or disseminated cutaneous leishmaniasis (DCL). After the formation of a primary skin lesion at the site of the bite by a Leishmania-infected sand fly, the infection can disseminate to form secondary lesions. This metastatic phenotype causes significant morbidity and is often associated with a hyper-inflammatory immune response leading to the destruction of nasopharyngeal tissues in ML, and appearance of nodules or numerous ulcerated skin lesions in DCL. Recently, we connected this aggressive phenotype to the presence of Leishmania RNA virus (LRV) in strains of L. guyanensis, showing that LRV is responsible for elevated parasitaemia, destructive hyper-inflammation and an overall exacerbation of the disease. Further studies of this relationship and the distribution of LRVs in other Leishmania strains and species would benefit from improved methods of viral detection and quantitation, especially ones not dependent on prior knowledge of the viral sequence as LRVs show significant evolutionary divergence. METHODOLOGY/PRINCIPAL FINDINGS: This study reports various techniques, among which, the use of an anti-dsRNA monoclonal antibody (J2) stands out for its specific and quantitative recognition of dsRNA in a sequence-independent fashion. Applications of J2 include immunofluorescence, ELISA and dot blot: techniques complementing an arsenal of other detection tools, such as nucleic acid purification and quantitative real-time-PCR. We evaluate each method as well as demonstrate a successful LRV detection by the J2 antibody in several parasite strains, a freshly isolated patient sample and lesion biopsies of infected mice. CONCLUSIONS/SIGNIFICANCE: We propose that refinements of these methods could be transferred to the field for use as a diagnostic tool in detecting the presence of LRV, and potentially assessing the LRV-related risk of complications in cutaneous leishmaniasis.