985 resultados para RISK OPTIMIZATION
Resumo:
We address a portfolio optimization problem in a semi-Markov modulated market. We study both the terminal expected utility optimization on finite time horizon and the risk-sensitive portfolio optimization on finite and infinite time horizon. We obtain optimal portfolios in relevant cases. A numerical procedure is also developed to compute the optimal expected terminal utility for finite horizon problem.
Resumo:
One could argue that the nature of our housing stock is a key determining factor in the ability of our citizens to manage risk, be resilient to various natural and human events, and to recover from these events. Recent research has been examining current challenges posed by our housing stock and exploring potential solutions from a range of perspectives. The aim of this paper is to discuss key findings from recent built environment research in Australia to initiate cross-sectorial discussion and debate about the implications and opportunities for other sectors such as emergency management and insurance. Three recent building research projects are discussed: - Heat waves The impact of heat waves on houses and occupants, and proposed changes to building regulations, air conditioning standards and building design, to reduce risks associated with heat waves. - Net zero energy homes Exploration of the potential benefits of a strategic optimization of building quality, energy and water efficiency, and household or community level distributed energy and water services for disaster management and recovery. - Building information Mapping of the flow of information about residential buildings, and the potential for national or regional building files (in a similar manner to personal medical records) to assist all parties to make more informed decisions that impact on housing sustainability and community resilience. The paper discusses how sustainability, environmental performance and resilience are inter-related, and can be supported by building files. It concludes with a call for increased cross-sectorial collaboration to explore opportunities for a whole-of-systems approach to our built environment that addresses a range of economic and environmental challenges as well as disaster and emergency management.
Resumo:
Uncertainty plays an important role in water quality management problems. The major sources of uncertainty in a water quality management problem are the random nature of hydrologic variables and imprecision (fuzziness) associated with goals of the dischargers and pollution control agencies (PCA). Many Waste Load Allocation (WLA)problems are solved by considering these two sources of uncertainty. Apart from randomness and fuzziness, missing data in the time series of a hydrologic variable may result in additional uncertainty due to partial ignorance. These uncertainties render the input parameters as imprecise parameters in water quality decision making. In this paper an Imprecise Fuzzy Waste Load Allocation Model (IFWLAM) is developed for water quality management of a river system subject to uncertainty arising from partial ignorance. In a WLA problem, both randomness and imprecision can be addressed simultaneously by fuzzy risk of low water quality. A methodology is developed for the computation of imprecise fuzzy risk of low water quality, when the parameters are characterized by uncertainty due to partial ignorance. A Monte-Carlo simulation is performed to evaluate the imprecise fuzzy risk of low water quality by considering the input variables as imprecise. Fuzzy multiobjective optimization is used to formulate the multiobjective model. The model developed is based on a fuzzy multiobjective optimization problem with max-min as the operator. This usually does not result in a unique solution but gives multiple solutions. Two optimization models are developed to capture all the decision alternatives or multiple solutions. The objective of the two optimization models is to obtain a range of fractional removal levels for the dischargers, such that the resultant fuzzy risk will be within acceptable limits. Specification of a range for fractional removal levels enhances flexibility in decision making. The methodology is demonstrated with a case study of the Tunga-Bhadra river system in India.
Resumo:
The rupture of a cerebral artery aneurysm causes a devastating subarachnoid hemorrhage (SAH), with a mortality of almost 50% during the first month. Each year, 8-11/100 000 people suffer from aneurysmal SAH in Western countries, but the number is twice as high in Finland and Japan. The disease is most common among those of working age, the mean age at rupture being 50-55 years. Unruptured cerebral aneurysms are found in 2-6% of the population, but knowledge about the true risk of rupture is limited. The vast majority of aneurysms should be considered rupture-prone, and treatment for these patients is warranted. Both unruptured and ruptured aneurysms can be treated by either microsurgical clipping or endovascular embolization. In a standard microsurgical procedure, the neck of the aneurysm is closed by a metal clip, sealing off the aneurysm from the circulation. Endovascular embolization is performed by packing the aneurysm from the inside of the vessel lumen with detachable platinum coils. Coiling is associated with slightly lower morbidity and mortality than microsurgery, but the long-term results of microsurgically treated aneurysms are better. Endovascular treatment methods are constantly being developed further in order to achieve better long-term results. New coils and novel embolic agents need to be tested in a variety of animal models before they can be used in humans. In this study, we developed an experimental rat aneurysm model and showed its suitability for testing endovascular devices. We optimized noninvasive MRI sequences at 4.7 Tesla for follow-up of coiled experimental aneurysms and for volumetric measurement of aneurysm neck remnants. We used this model to compare platinum coils with polyglycolic-polylactic acid (PGLA) -coated coils, and showed the benefits of the latter in this model. The experimental aneurysm model and the imaging methods also gave insight into the mechanisms involved in aneurysm formation, and the model can be used in the development of novel imaging techniques. This model is affordable, easily reproducible, reliable, and suitable for MRI follow-up. It is also suitable for endovascular treatment, and it evades spontaneous occlusion.
Resumo:
Modeling and forecasting of implied volatility (IV) is important to both practitioners and academics, especially in trading, pricing, hedging, and risk management activities, all of which require an accurate volatility. However, it has become challenging since the 1987 stock market crash, as implied volatilities (IVs) recovered from stock index options present two patterns: volatility smirk(skew) and volatility term-structure, if the two are examined at the same time, presents a rich implied volatility surface (IVS). This implies that the assumptions behind the Black-Scholes (1973) model do not hold empirically, as asset prices are mostly influenced by many underlying risk factors. This thesis, consists of four essays, is modeling and forecasting implied volatility in the presence of options markets’ empirical regularities. The first essay is modeling the dynamics IVS, it extends the Dumas, Fleming and Whaley (DFW) (1998) framework; for instance, using moneyness in the implied forward price and OTM put-call options on the FTSE100 index, a nonlinear optimization is used to estimate different models and thereby produce rich, smooth IVSs. Here, the constant-volatility model fails to explain the variations in the rich IVS. Next, it is found that three factors can explain about 69-88% of the variance in the IVS. Of this, on average, 56% is explained by the level factor, 15% by the term-structure factor, and the additional 7% by the jump-fear factor. The second essay proposes a quantile regression model for modeling contemporaneous asymmetric return-volatility relationship, which is the generalization of Hibbert et al. (2008) model. The results show strong negative asymmetric return-volatility relationship at various quantiles of IV distributions, it is monotonically increasing when moving from the median quantile to the uppermost quantile (i.e., 95%); therefore, OLS underestimates this relationship at upper quantiles. Additionally, the asymmetric relationship is more pronounced with the smirk (skew) adjusted volatility index measure in comparison to the old volatility index measure. Nonetheless, the volatility indices are ranked in terms of asymmetric volatility as follows: VIX, VSTOXX, VDAX, and VXN. The third essay examines the information content of the new-VDAX volatility index to forecast daily Value-at-Risk (VaR) estimates and compares its VaR forecasts with the forecasts of the Filtered Historical Simulation and RiskMetrics. All daily VaR models are then backtested from 1992-2009 using unconditional, independence, conditional coverage, and quadratic-score tests. It is found that the VDAX subsumes almost all information required for the volatility of daily VaR forecasts for a portfolio of the DAX30 index; implied-VaR models outperform all other VaR models. The fourth essay models the risk factors driving the swaption IVs. It is found that three factors can explain 94-97% of the variation in each of the EUR, USD, and GBP swaption IVs. There are significant linkages across factors, and bi-directional causality is at work between the factors implied by EUR and USD swaption IVs. Furthermore, the factors implied by EUR and USD IVs respond to each others’ shocks; however, surprisingly, GBP does not affect them. Second, the string market model calibration results show it can efficiently reproduce (or forecast) the volatility surface for each of the swaptions markets.
Resumo:
Methodologies are presented for minimization of risk in a river water quality management problem. A risk minimization model is developed to minimize the risk of low water quality along a river in the face of conflict among various stake holders. The model consists of three parts: a water quality simulation model, a risk evaluation model with uncertainty analysis and an optimization model. Sensitivity analysis, First Order Reliability Analysis (FORA) and Monte-Carlo simulations are performed to evaluate the fuzzy risk of low water quality. Fuzzy multiobjective programming is used to formulate the multiobjective model. Probabilistic Global Search Laussane (PGSL), a global search algorithm developed recently, is used for solving the resulting non-linear optimization problem. The algorithm is based on the assumption that better sets of points are more likely to be found in the neighborhood of good sets of points, therefore intensifying the search in the regions that contain good solutions. Another model is developed for risk minimization, which deals with only the moments of the generated probability density functions of the water quality indicators. Suitable skewness values of water quality indicators, which lead to low fuzzy risk are identified. Results of the models are compared with the results of a deterministic fuzzy waste load allocation model (FWLAM), when methodologies are applied to the case study of Tunga-Bhadra river system in southern India, with a steady state BOD-DO model. The fractional removal levels resulting from the risk minimization model are slightly higher, but result in a significant reduction in risk of low water quality. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Many engineering applications face the problem of bounding the expected value of a quantity of interest (performance, risk, cost, etc.) that depends on stochastic uncertainties whose probability distribution is not known exactly. Optimal uncertainty quantification (OUQ) is a framework that aims at obtaining the best bound in these situations by explicitly incorporating available information about the distribution. Unfortunately, this often leads to non-convex optimization problems that are numerically expensive to solve.
This thesis emphasizes on efficient numerical algorithms for OUQ problems. It begins by investigating several classes of OUQ problems that can be reformulated as convex optimization problems. Conditions on the objective function and information constraints under which a convex formulation exists are presented. Since the size of the optimization problem can become quite large, solutions for scaling up are also discussed. Finally, the capability of analyzing a practical system through such convex formulations is demonstrated by a numerical example of energy storage placement in power grids.
When an equivalent convex formulation is unavailable, it is possible to find a convex problem that provides a meaningful bound for the original problem, also known as a convex relaxation. As an example, the thesis investigates the setting used in Hoeffding's inequality. The naive formulation requires solving a collection of non-convex polynomial optimization problems whose number grows doubly exponentially. After structures such as symmetry are exploited, it is shown that both the number and the size of the polynomial optimization problems can be reduced significantly. Each polynomial optimization problem is then bounded by its convex relaxation using sums-of-squares. These bounds are found to be tight in all the numerical examples tested in the thesis and are significantly better than Hoeffding's bounds.
Resumo:
Recent advances in theoretical neuroscience suggest that motor control can be considered as a continuous decision-making process in which uncertainty plays a key role. Decision-makers can be risk-sensitive with respect to this uncertainty in that they may not only consider the average payoff of an outcome, but also consider the variability of the payoffs. Although such risk-sensitivity is a well-established phenomenon in psychology and economics, it has been much less studied in motor control. In fact, leading theories of motor control, such as optimal feedback control, assume that motor behaviors can be explained as the optimization of a given expected payoff or cost. Here we review evidence that humans exhibit risk-sensitivity in their motor behaviors, thereby demonstrating sensitivity to the variability of "motor costs." Furthermore, we discuss how risk-sensitivity can be incorporated into optimal feedback control models of motor control. We conclude that risk-sensitivity is an important concept in understanding individual motor behavior under uncertainty.
Resumo:
Reducing energy consumption is a major challenge for "energy-intensive" industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of "optimized" operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method.
Resumo:
Reducing energy consumption is a major challenge for energy-intensive industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of optimized operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method. © 2006 IEEE.
Resumo:
Introduction: Older individuals are particularly vulnerable to potentially inappropriate prescribing (PIP), drug related problems (DRPs) and adverse drug reactions (ADRs). A number of different interventions have been proposed to address these issues. However to-date there is a paucity of well-designed trials examining the impact of such interventions. Therefore the aims of this work were to: (i) establish a baseline PIP prevalence both nationally and internationally using the STOPP, Beers and PRISCUS criteria, (ii) identify the most comprehensive method of assessing PIP in older individuals, (iii) develop a structured pharmacist intervention supported by a computer decisions support system (CDSS) and (iv) examine the impact of this intervention on prescribing and incidence of ADRs. Results: This work identified high rates of PIP across all three healthcare settings in Ireland, 84.7% in the long term care, 70.7% in secondary care and 43.3% in primary care being reported. This work identified that for a comprehensive assessment of prescribing to be undertaken, an amalgamation of all three criteria should be deployed simultaneously. High prevalences of DRPs and PIP in older hospitalised individuals were identified. With 82.0% and 76.3% of patients reported to have at least one DRP or PIP instance respectively. The structured pharmacist intervention demonstrated a positive impact on prescribing, with a significant reduction MAI scores being reported. It also resulted in the intervention patients’ having a reduced risk of experiencing an ADR when compared to the control patients (absolute risk reduction of 6.8 (95% CI 1.5% - 12.3%)) and the number needed to treat = 15 (95% CI 8 - 68). However the intervention was found to have no significant effect on length of stay or mortality rate. Conclusion: This work shows that PIP is highly prevalent in older individuals across three healthcare settings in Ireland. This work also demonstrates that a structured pharmacist intervention support by a dedicated CDSS can significantly improve the appropriateness of prescribing and reduce the incidence of ADRs in older acutely ill hospitalised individuals.
Resumo:
In this paper, we propose a framework for robust optimization that relaxes the standard notion of robustness by allowing the decision maker to vary the protection level in a smooth way across the uncertainty set. We apply our approach to the problem of maximizing the expected value of a payoff function when the underlying distribution is ambiguous and therefore robustness is relevant. Our primary objective is to develop this framework and relate it to the standard notion of robustness, which deals with only a single guarantee across one uncertainty set. First, we show that our approach connects closely to the theory of convex risk measures. We show that the complexity of this approach is equivalent to that of solving a small number of standard robust problems. We then investigate the conservatism benefits and downside probability guarantees implied by this approach and compare to the standard robust approach. Finally, we illustrate theme thodology on an asset allocation example consisting of historical market data over a 25-year investment horizon and find in every case we explore that relaxing standard robustness with soft robustness yields a seemingly favorable risk-return trade-off: each case results in a higher out-of-sample expected return for a relatively minor degradation of out-of-sample downside performance. © 2010 INFORMS.
Resumo:
This paper presents a design methodology based on numerical modelling, integrated with optimisation techniques and statistical methods, to aid the development of new advanced technologies in the area of micro and nano systems. The design methodology is demonstrated for a micro-machining process called Focused Ion Beam (FIB). This process has been modelled to provide knowledge of how a pre-defined geometry can be achieved through this direct milling. The geometry characterisation is obtained using a Reduced Order Models (ROM), generated from the results of a mathematical model of the Focused Ion Beam, and Design of Experiment (DoE) methods. In this work, the focus is on the design flow methodology which includes an approach on how to include process parameter uncertainties into the process optimisation modelling framework. A discussion on the impact of the process parameters, and their variations, on the quality and performance of the fabricated structure is also presented. The design task is to identify the optimal process conditions, by altering the process parameters, so that certain reliability and confidence of the application is achieved and the imposed constraints are satisfied. The software tools used and developed to demonstrate the design methodology are also presented.
Resumo:
This paper describes a framework that is being developed for the prediction and analysis of electronics power module reliability both for qualification testing and in-service lifetime prediction. Physics of failure (PoF) reliability methodology using multi-physics high-fidelity and reduced order computer modelling, as well as numerical optimization techniques, are integrated in a dedicated computer modelling environment to meet the needs of the power module designers and manufacturers as well as end-users for both design and maintenance purposes. An example of lifetime prediction for a power module solder interconnect structure is described. Another example is the lifetime prediction of a power module for a railway traction control application. Also in the paper a combined physics of failure and data trending prognostic methodology for the health monitoring of power modules is discussed.