855 resultados para RIETVELD REFINEMENT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bioceramic systems based on hydroxylapatite (HAP) are an important class of bioactive materials that may promote bone regeneration. The aim of this research was to evaluate how the stoichiometry of HAP influences its microstructural properties when diagnosed using the combined Rietveld method and Maximum entropy method (MEM). The Rietveld Method (RM) is recognizably a powerful tool used to obtain structural and microstructural information of polycrystalline samples analyzed by x-ray diffraction. Latterly have combined the RM with the maximum entropy method (MEM), with the goal of improve structural refinement results. The MEM provides high resolution maps of electron density and their analysis leave the accurate localization of atoms inside of unit cell. Like that, cycles Rietveld-MEM allow an excellent structural refinement In this work, a hydroxylapatite sample obtained by emulsion method had its structure refined using one cycle Rietveld-MEM with x-ray diffraction data. The indices obtained in initial refinement was Rwp = 7.50%, Re = 6.56%, S - 1.14% e RB = 1.03%. After MEM refinement and electron densities maps analysis to correction of atomics positions, the news indicators of Rietveld refinement quality was Rwp = 7.35%, Re = 6.56%, S = 1.12% and RB = 0.75%. The excellent result obtained to RB shows the efficiency of MEM as auxiliary in the refinement of structure of hydroxylapatite by RM.
Resumo:
In this work, (Ca 1-xCu x)TiO 3 crystals with (x = 0, 0.01 and 0.02), labeled as CTO, CCTO1 and CCTO2, were synthesized by the microwave-hydrothermal method at 140°C for 32 min. XRD patterns (Fig. 1), Rietveld refinement and FT-Raman spectroscopy indicated that these crystals present orthorhombic structure Pbnm. Micro-Raman and XANES spectra suggested that the substitution of Ca by Cu in A-site promoted a displacement of the [TiO6]-[TiO6] clusters adjacent from its symmetric center, which leads distortions on the [CaO 12] clusters neighboring and consequently cause the strains into the CaTiO3 lattice. FE-SEM images showed that these crystals have an irregular shape as cube like probably indicating an Ostwald-ripening and self-assemble as dominant mechanisms to crystals growth. The powders presented an intense PL blue-emission.
Resumo:
Lead molybdate (PbMoO4) crystals were synthesized by the co-precipitation method at room temperature and then processed in a conventional hydrothermal (CH) system at low temperature (70 °C for different times). These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, micro-Raman (MR) and Fourier transformed infrared (FT-IR) spectroscopies. Field emission scanning electron microscopy images were employed to observe the shape and monitor the crystal growth process. The optical properties were investigated by ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) measurements. XRD patterns and MR spectra indicate that these crystals have a scheelite-type tetragonal structure. Rietveld refinement data possibilities the evaluation of distortions in the tetrahedral [MoO 4] clusters. MR and FT-IR spectra exhibited a high mode ν1(Ag) ascribed to symmetric stretching vibrations as well as a large absorption band with two modes ν3(Eu and Au) related to anti-symmetric stretching vibrations in [MoO 4] clusters. Growth mechanisms were proposed to explain the stages involved for the formation of octahedron-like PbMoO4 crystals. UV-Vis absorption spectra indicate a reduction in optical band gap with an increase in the CH processing time. PL properties of PbMoO4 crystals have been elucidated using a model based on distortions of tetrahedral [MoO4] clusters due to medium-range intrinsic defects and intermediary energy levels (deep and shallow holes) within the band gap. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
É um consenso que a cinza de casca de arroz é um resíduo agrícola com comprovada eficiência pozolânica. Contudo, por se tratar de um resíduo, apresenta problemas de variabilidade decorrente dentre outras coisas de sua origem e dos diferentes processos de geração, fator este que dificulta sua comercialização. Hoje em dia, a determinação da atividade pozolânica do resíduo e determinada pela NBR 5752[3] (ABNT, 2012) e NBR 5751(2)(ABNT, 2012). A desvantagem com relação a estes ensaios é o tempo que se leva para ter uma resposta. Nesse sentido, este trabalho visa analisar a eficiência do refinamento de Rietveld para avaliar a pozolanicidade através do parâmetro denominado de índice de amorfismo. Por meio desse refinamento é possível dizer, de forma quantitativa, a porcentagem de elementos reativos que o resíduo apresenta, operadores com conhecimento da técnica de análise levam em torno de dois dias para apresentar os resultados. Para avaliação dessa técnica, as cinzas foram produzidas através da queima em diferentes temperaturas (500, 600, 800, 900 e 1100 ºC). Fixou-se o tempo de queima do material em três horas e a taxa de aquecimento em 5 ºC/min, e resfriamento lento. Posteriormente realizou-se a moagem da cinza e quantificação do índice de amorfismo por meio de refinamento Rietveld. Os resultados demonstraram que o índice de amorfismo pode ser utilizado como parâmetro de controle de cinzas residuais, visto que cinzas com elevado índice de amorfismo apresen-tam uma boa pozolanicidade.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work, barium zirconate (BaZrO3) ceramics synthesized by solid state reaction method and sintered at 1670 degrees C for 4 h were characterized by X-ray diffraction (XRD), Rietveld refinement, and Fourier transform infrared (FT-IR) spectroscopy. XRD patterns, Rietveld refinement data and FT-IR spectra which confirmed that BaZrO3 ceramics have a perovskite-type cubic structure. Optical properties were investigated by ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) measurements. UV-vis absorption spectra suggested an indirect allowed transition with the existence of intermediary energy levels within the band gap. Intense visible green PL emission was observed in BaZrO3 ceramics upon excitation with a 350 nm wavelength. This behavior is due to a majority of deep defects within the band gap caused by symmetry breaking in octahedral [ZrO6] clusters in the lattice. The microwave dielectric constant and quality factor were measured using the method proposed by Hakki-Coleman. The dielectric resonator antenna (DRA) was investigated experimentally and numerically using a monopole antenna through an infinite ground plane and Ansoft's high frequency structure simulator software, respectively. The required resonance frequency and bandwidth of DRA were investigated by adjusting the dimension of the same material. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Manganese tungstate (MnWO4) nanorods were prepared at room temperature by the co-precipitation method and synthesized after processing in a microwave-hydrothermal (MH) system at 140 degrees C for 6-96 min. These nanorods were structurally characterized by X-ray diffraction (XRD), Rietveld refinements and Fourier transform (FT)-Raman spectroscopy. The growth direction, shape and average size distribution of nanorods were observed by means of transmission electron microscopy (TEM) and high resolution TEM (HR-TEM). The optical properties of the nanorods were investigated by ultraviolet visible (UV-vis) absorption and photoluminescence (PL) measurements. XRD patterns, Rietveld refinement data and FT-Raman spectroscopy indicate that the MnWO4 precipitate is not a single phase structure while the nanorods synthesized by MH processing have a wolframite-type monoclinic structure without deleterious phases. FT-Raman spectra exhibited the presence of 17 Raman-active modes from 50 to 1,000 cm(-1). TEM and HR-TEM micrographs indicated that the nanorods are aggregated due to surface energy by Van der Waals forces and grow along the [100] direction. UV-vis absorption measurements confirmed non-linear values for the optical band gap (from 3.2 to 2.72 eV), which increased as the MH processing time increased. The structural characterizations indicated that the presence of defects in the MnWO4 precipitate promotes a significant contribution to maximum PL emission, while MnWO4 nanorods obtained by MH processing decrease the PL emission due to the reduction of defects in the lattice.
Resumo:
Ni(1-x)FexO nanoparticles have been obtained by the co-precipitation chemical route. X-ray diffraction analyses using Rietveld refinement have shown a slight decrease in the microstrain and mean particle size as a function of the Fe content. The zero-field-cooling (ZFC) and field-cooling (FC) magnetization curves show superparamagnetic behavior at high temperatures and a low temperature peak (at T = 11 K), which is enhanced with increasing Fe concentration. Unusual behavior of the coercive field in the low temperature region and an exchange bias behavior were also observed. A decrease in the Fe concentration induces an increase in the exchange bias field. We argue that these behaviors can be linked with the strengthening of surface anisotropy caused by the incorporation of Fe ions.
Resumo:
X-ray powder diffraction was used to study the phase composition of human renal calculi. The stones were collected from 56 donors in Vitoria, Espirito Santo state, southeastern Brazil. An XRD phase quantification revealed that 61% of the studied renal stones were composed exclusively of calcium oxalate [34% formed only by calcium oxalate rnonohydrate (COM) and 27% presents both monohydrate and dihydratate calcium oxalate]. The 39% multi-composed calculi have various other phases such as uric acid and calcium phosphate. Rietveld refinement of XRD data of one apparent monophasic (COM) renal calculus revealed the presence of a small amount of hydroxyapatite. The presence of this second phase and the morphology of the stone (ellipsoidal) indicated that this calculus can be classified as non-papillary type and its nucleation process developed in closed kidney cavities. In order to show some advantages of the X-ray powder diffraction technique, a study of the phase transformation of monohydrate calcium oxalate into calcium carbonate (CaCO(3)) was carried out by annealing of a monophasic COM calculi at 200, 300, and 400 degrees C for 48 h in a N(2) gas atmosphere. The results of the XRD for the heat treated samples is ill good agreement with the thermogravimetric analysis found in the literature and shows that X-ray powder diffraction can be used as a suitable technique to study the composition and phase diagram of renal calculi. (C) 2008 International Centre for Diffraction Data.
Resumo:
Some materials exhibit a combustion event during mechanical alloying, which results in the rapid transformation of reactants into products, while others show a slow transformation of reactants into products, In this paper, the continuous W + C --> WC reaction is compared to the Ti + C --> TiC combustion reaction. Rietveld refinement of X-ray diffraction patterns is used to show that these particular reactions proceed through different pathways, determined by crystallographic factors of the reactants. When a crystallographic relationship exists between the reactants and the products, such as that between W and WC, the product forms slowly over a period of time. In contrast, insertion of C into the Ti structure is associated with atomic rearrangements within the crowded lattice planes and the subsequent catastrophic failure of the reactant lattices results in combustion to form TiC. (C) 2001 Academic Press.