920 resultados para RIBOSOMAL-RNA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The frequency of adenine mononucleotides (A), dinucleotides (AA) and clusters, and the positions of clusters, were studied in 502 molecules of the 5S rRNA.All frequencies were reduced in the evolutive lines of vertebrates, plants and fungi, in parallel with increasing organismic complexity. No change was observed in invertebrates. All frequencies were increased in mitochondria, plastids and mycoplasmas. The presumed relatives to the ancestors of the organelles, Rhodobacteria alfa and Cyanobacteria, showed intermediate values, relative to the eubacterial averages. Firmibacterid showed very high number of cluster sites.Clusters were more frequent in single-stranded regions in all organisms. The routes of organelles and mycoplasmas accummulated clusters at faster rates in double-stranded regions. Rates of change were higher for AA and clusters than for A in plants, vertebrates and organeltes, higher for cluster sites and A in mycoplasmas, and higher for AA and A in fungi. These data indicated that selection pressures acted more strongly on adenine clustering than on adenine frequency.It is proposed that AA and clusters, as sites of lower informational content. have the property of tolerating positional variation in the sites of other molecules (or other regions of the same molecule) that interact with the adenines. This reasoning was consistent with the degrees of genic polymorphism. low in plants and vertebrates and high in invertebrates. In the eubacteria endosymbiontic or parasitic to eukaryotes, the more tolerant RNA would be better adapted to interactions with the homologous nucleus-derived ribosomal proteins: the intermediate values observed in their precursors were interpreted as preadaptive.Among other groups, only the Deinococcus-Thermus eubacteria showed excessive AA and cluster contents, possibly related to their peculiar tolerance to mutagens, and the Ciliates showed excessive AA contents, indicative of retention of primitive characters.
Resumo:
The phylogenetic interrelationships of members of the Clostridium botulinum complex of species was investigated by direct sequencing of their 16S rRNA genes. Comparative analysis of the 16S rRNA sequences demonstrated the presence of four phylogenetically distinct lineages corresponding to: i) proteolytic C. botulinum types Al B, and F, and C. sporogenes, ii) saccharolytic types B, E and F, iii) types C and D and C. novyi type A, and iv) type G and C. subterminale. The phylogenetic groupings obtained from the 16S rRNA were in complete agreement with the four divisions recognised within the 'species complex' on the basis of phenotypic criteria.
Resumo:
In this study, we report the cloning and nucleotide sequence of PCR-generated 5S rDNA from the Tilapiine cichlid fish, Oreochromis niloticus. Two types of 5S rDNA were detected that differed by insertions and/or deletions and base substitutions within the non-transcribed spacer (NTS). Two 5S rDNA loci were observed by fluorescent in situ hybridization (FISH) in metaphase spreads of tilapia chromosomes. FISH using an 18S rDNA probe and silver nitrate sequential staining of 5S-FISH slides showed three 18S rDNA loci that are not syntenic to the 5S rDNA loci.
Resumo:
A physical chromosome mapping of the H1 histone and 5S and 18S ribosomal RNA (rRNA) genes was performed in interspecific hybrids of Pseudoplatystoma corruscans and P. reticulatum. The results showed that 5S rRNA clusters were located in the terminal region of 2 chromosomes. H1 histone and 18S ribosomal genes were co-localized in the terminal portion of 2 chromosomes (distinct from the chromosomes bearing 5S clusters). These results represent the first report of association between H1 histone and 18S genes in fish genomes. The chromosome clustering of ribosomal and histone genes was already reported for different organisms and suggests a possible selective pressure for the maintenance of this association. © 2012 S. Karger AG, Basel.
Resumo:
Nucleoli, nuclear organelles in which ribosomal RNA is synthesized and processed, emerge from nucleolar organizers (NORs) located in distinct chromosomal regions. In polytene nuclei of dipterans, nucleoli of some species can be observed under light microscopy exhibiting distinctive morphology: Drosophila and chironomid species display well-formed nucleoli in contrast to the fragmented and dispersed nucleoli seen in sciarid flies. The available data show no apparent relationship between nucleolar morphology and location of NORs in Diptera. The regulation of rRNA transcription involves controlling both the transcription rate per gene as well as the proportion of rRNA genes adopting a proper chromatin structure for transcription, since active and inactive rRNA gene copies coexist in NORs. Transcription units organized in nucleosomes and those lacking canonical nucleosomes can be analyzed by the method termed psoralen gel retarding assay (PGRA), allowing inferences on the ratio of active to inactive rRNA gene copies. In this work, possible connections between chromosomal location of NORs and proportion of active rRNA genes were studied in Drosophila melanogaster, and in chironomid and sciarid species. The data suggested a link between location of NORs and proportion of active rRNA genes since the copy number showing nucleosomal organization predominates when NORs are located in the pericentric heterochromatin. The results presented in this work are in agreement with previous data on the chromatin structure of rRNA genes from distantly related eukaryotes, as assessed by the PGRA.
Resumo:
Different life-cycle stages of Trypanosoma brucei are characterized by stage-specific glycoprotein coats. GPEET procyclin, the major surface protein of early procyclic (insect midgut) forms, is transcribed in the nucleolus by RNA polymerase I as part of a polycistronic precursor that is processed to monocistronic mRNAs. In culture, when differentiation to late procyclic forms is triggered by removal of glycerol, the precursor is still transcribed, but accumulation of GPEET mRNA is prevented by a glycerol-responsive element in the 3' UTR. A genome-wide RNAi screen for persistent expression of GPEET in glycerol-free medium identified a novel protein, NRG1 (Nucleolar Regulator of GPEET 1), as a negative regulator. NRG1 associates with GPEET mRNA and with several nucleolar proteins. These include two PUF proteins, TbPUF7 and TbPUF10, and BOP1, a protein required for rRNA processing in other organisms. RNAi against each of these components prolonged or even increased GPEET expression in the absence of glycerol as well as causing a significant reduction in 5.8S rRNA and its immediate precursor. These results indicate that components of a complex used for rRNA maturation can have an additional role in regulating mRNAs that originate in the nucleolus.
Resumo:
Involvement of E. coli 23S ribosomal RNA (rRNA) in decoding of termination codons was first indicated by the characterization of a 23S rRNA mutant that causes UGA-specific nonsense suppression. The work described here was begun to test the hypothesis that more 23S rRNA suppressors of specific nonsense mutations can be isolated and that they would occur non-randomly in the rRNA genes and be clustered in specific, functionally significant regions of rRNA.^ Approximately 2 kilobases of the gene for 23S rRNA were subjected to PCR random mutagenesis and the amplified products screened for suppression of nonsense mutations in trpA. All of the suppressor mutations obtained were located in a thirty-nucleotide part of the GTPase center, a conserved rRNA sequence and structure, and they and others made in that region by site-directed mutagenesis were shown to be UGA-specific in their suppression of termination codon mutations. These results proved the initial hypothesis and demonstrated that a group of nucleotides in this region are involved in decoding of the UGA termination codon. Further, it was shown that limitation of cellular availability or synthesis of L11, a ribosomal protein that binds to the GTPase center rRNA, resulted in suppression of termination codon mutations, suggesting the direct involvement of L11 in termination in vivo.^ Finally, in vivo analysis of certain site-specific mutations made in the GTPase center RNA demonstrated that (a) the G$\cdot$A base pair closing the hexanucleotide hairpin loop was not essential for normal termination, (b) the "U-turn" structure in the 1093 to 1098 hexaloop is critical for normal termination, (c) nucleotides A1095 and A1067, necessary for the binding to ribosomes of thiostrepton, an antibiotic that inhibits polypeptide release factor binding to ribosomes in vitro, are also necessary for normal peptide chain termination in vivo, and (d) involvement of this region of rRNA in termination is determined by some unique subset structure that includes particular nucleotides rather than merely by a general structural feature of the GTPase center.^ This work advances the understanding of peptide chain termination by demonstrating that the GTPase region of 23S rRNA participates in recognition of termination codons, through an associated ribosomal protein and specific conserved nucleotides and structural motifs in its RNA. ^
Resumo:
Two regions in the 3$\prime$ domain of 16S rRNA (the RNA of the small ribosomal subunit) have been implicated in decoding of termination codons. Using segment-directed PCR random mutagenesis, I isolated 33 translational suppressor mutations in the 3$\prime$ domain of 16S rRNA. Characterization of the mutations by both genetic and biochemical methods indicated that some of the mutations are defective in UGA-specific peptide chain termination and that others may be defective in peptide chain termination at all termination codons. The studies of the mutations at an internal loop in the non-conserved region of helix 44 also indicated that this structure, in a non-conserved region of 16S rRNA, is involved in both peptide chain termination and assembly of 16S rRNA.^ With a suppressible trpA UAG nonsense mutation, a spontaneously arising translational suppressor mutation was isolated in the rrnB operon cloned into a pBR322-derived plasmid. The mutation caused suppression of UAG at two codon positions in trpA but did not suppress UAA or UGA mutations at the same trpA positions. The specificity of the rRNA suppressor mutation suggests that it may cause a defect in UAG-specific peptide chain termination. The mutation is a single nucleotide deletion (G2484$\Delta$) in helix 89 of 23S rRNA (the large RNA of the large ribosomal subunit). The result indicates a functional interaction between two regions of 23S rRNA. Furthermore, it provides suggestive in vivo evidence for the involvement of the peptidyl-transferase center of 23S rRNA in peptide chain termination. The $\Delta$2484 and A1093/$\Delta$2484 (double) mutations were also observed to alter the decoding specificity of the suppressor tRNA lysT(U70), which has a mutation in its acceptor stem. That result suggests that there is an interaction between the stem-loop region of helix 89 of 23S rRNA and the acceptor stem of tRNA during decoding and that the interaction is important for the decoding specificity of tRNA.^ Using gene manipulation procedures, I have constructed a new expression vector to express and purify the cellular protein factors required for a recently developed, realistic in vitro termination assay. The gene for each protein was cloned into the newly constructed vector in such a way that expression yielded a protein with an N-terminal affinity tag, for specific, rapid purification. The amino terminus was engineered so that, after purification, the unwanted N-terminal tag can be completely removed from the protein by thrombin cleavage, yielding a natural amino acid sequence for each protein. I have cloned the genes for EF-G and all three release factors into this new expression vector and the genes for all the other protein factors into a pCAL-n expression vector. These constructs will allow our laboratory group to quickly and inexpensively purify all the protein factors needed for the new in vitro termination assay. (Abstract shortened by UMI.) ^
Resumo:
Several pathways modulating longevity and stress resistance converge on translation by targeting ribosomal proteins or initiation factors, but whether this involves modifications of ribosomal RNA is unclear. Here, we show that reduced levels of the conserved RNA methyltransferase NSUN5 increase the lifespan and stress resistance in yeast, worms and flies. Rcm1, the yeast homologue of NSUN5, methylates C2278 within a conserved region of 25S rRNA. Loss of Rcm1 alters the structural conformation of the ribosome in close proximity to C2278, as well as translational fidelity, and favours recruitment of a distinct subset of oxidative stress-responsive mRNAs into polysomes. Thus, rather than merely being a static molecular machine executing translation, the ribosome exhibits functional diversity by modification of just a single rRNA nucleotide, resulting in an alteration of organismal physiological behaviour, and linking rRNA-mediated translational regulation to modulation of lifespan, and differential stress response.
Resumo:
Elongation factor-catalyzed GTP hydrolysis is a key reaction during the ribosomal elongation cycle. Recent crystal structures of G proteins, such as elongation factor G (EF-G) bound to the ribosome, as well as many biochemical studies, provide evidence that the direct interaction of translational GTPases (trGTPases) with the sarcin-ricin loop (SRL) of ribosomal RNA (rRNA) is pivotal for hydrolysis. However, the precise mechanism remains elusive and is intensively debated. Based on the close proximity of the phosphate oxygen of A2662 of the SRL to the supposedly catalytic histidine of EF-G (His87), we probed this interaction by an atomic mutagenesis approach. We individually replaced either of the two nonbridging phosphate oxygens at A2662 with a methyl group by the introduction of a methylphosphonate instead of the natural phosphate in fully functional, reconstituted bacterial ribosomes. Our major finding was that only one of the two resulting diastereomers, the SP methylphosphonate, was compatible with efficient GTPase activation on EF-G. The same trend was observed for a second trGTPase, namely EF4 (LepA). In addition, we provide evidence that the negative charge of the A2662 phosphate group must be retained for uncompromised activity in GTP hydrolysis. In summary, our data strongly corroborate that the nonbridging proSP phosphate oxygen at the A2662 of the SRL is critically involved in the activation of GTP hydrolysis. A mechanistic scenario is supported in which positioning of the catalytically active, protonated His87 through electrostatic interactions with the A2662 phosphate group and H-bond networks are key features of ribosome-triggered activation of trGTPases.
Resumo:
Elongation factor-catalyzed GTP hydrolysis is a key reaction during the ribosomal elongation cycle. Recent crystal structures of G proteins, such as elongation factor G (EF-G) bound to the ribosome, as well as many biochemical studies, provide evidence that the direct interaction of translational GTPases (trGTPases) with the sarcin-ricin loop (SRL) of ribosomal RNA (rRNA) is pivotal for hydrolysis. However, the precise mechanism remains elusive and is intensively debated. Based on the close proximity of the phosphate oxygen of A2662 of the SRL to the supposedly catalytic histidine of EF-G (His87), we probed this interaction by an atomic mutagenesis approach. We individually replaced either of the two nonbridging phosphate oxygens at A2662 with a methyl group by the introduction of a methylphosphonate instead of the natural phosphate in fully functional, reconstituted bacterial ribosomes. Our major finding was that only one of the two resulting diastereomers, the SP methylphosphonate, was compatible with efficient GTPase activation on EF-G. The same trend was observed for a second trGTPase, namely EF4 (LepA). In addition, we provide evidence that the negative charge of the A2662 phosphate group must be retained for uncompromised activity in GTP hydrolysis. (1) In summary, our data strongly corroborate that the nonbridging proSP phosphate oxygen at the A2662 of the SRL is critically involved in the activation of GTP hydrolysis. A mechanistic scenario is supported in which positioning of the catalytically active, protonated His87 through electrostatic interactions with the A2662 phosphate group and H-bond networks are key features of ribosome-triggered activation of trGTPases.