910 resultados para RESORPTION
Resumo:
Bone is a physiologically dynamic tissue being constantly regenerated throughout life as a consequence of bone turnover by bone-resorbing osteoclasts and bone-forming osteoblasts. In certain bone diseases, such as osteoporosis, the imbalance in bone turnover leads to bone loss and increased fracture risk. Measurement of bone mineral density (BMD) predicts the risk of fracture, but also biochemical markers of bone metabolism have been suggested to be suitable for prediction of fractures and monitoring the efficacy of antiresorptive treatment. Tartrate-resistant acid phosphatase 5b (TRACP 5b) is an enzyme released from osteoclasts into the circulation, from where it can be detected kinetically or immunologically. Conventional assays for serum total TRACP were spectrophotometric and suffered from interference by other acid phosphatases and non-osteoclastic TRACP 5a isoform. Our aim was to develop novel immunoassays for osteoclastic TRACP 5b. Serum TRACP 5b levels were elevated in individuals with high bone turnover, such as children, postmenopausal women, patients with osteoporosis, Paget’s disease and breast cancer patients with bone metastases. As expected, hormone replacement therapy (HRT) in postmenopausal women decreased the levels of serum TRACP 5b. Surprisingly, the highest TRACP 5b levels were observed in individuals with rare autosomal dominant osteopetrosis type II (ADO2), which is characterized by high BMD and fracture risk with simultaneously elevated levels of deficient osteoclasts. In ADO2 patients, elevated levels of serum TRACP 5b were associated with high fracture frequency. It is likely that serum TRACP 5b reflects the number of inactive osteoclasts in ADO2. Similar results supporting the hypothesis that TRACP 5b would reflect the number of osteoclasts instead of their activity were observed with cultured osteoclasts and in animal models. Novel TRACP 5b immunoassays may prove to be of value either as independent or combinatory tools with other bone metabolic markers and BMD measurements in clinical practice and bone research.
Resumo:
A successful bone tissue engineering strategy entails producing bone-scaffold constructs with adequate mechanical properties. Apart from the mechanical properties of the scaffold itself, the forming bone inside the scaffold also adds to the strength of the construct. In this study, we investigated the role of in vivo cyclic loading on mechanical properties of a bone scaffold. We implanted PLA/β-TCP scaffolds in the distal femur of six rats, applied external cyclic loading on the right leg, and kept the left leg as a control. We monitored bone formation at 7 time points over 35 weeks using time-lapsed micro-computed tomography (CT) imaging. The images were then used to construct micro-finite element models of bone-scaffold constructs, with which we estimated the stiffness for each sample at all time points. We found that loading increased the stiffness by 60% at 35 weeks. The increase of stiffness was correlated to an increase in bone volume fraction of 18% in the loaded scaffold compared to control scaffold. These changes in volume fraction and related stiffness in the bone scaffold are regulated by two independent processes, bone formation and bone resorption. Using time-lapsed micro-CT imaging and a newly-developed longitudinal image registration technique, we observed that mechanical stimulation increases the bone formation rate during 4-10 weeks, and decreases the bone resorption rate during 9-18 weeks post-operatively. For the first time, we report that in vivo cyclic loading increases mechanical properties of the scaffold by increasing the bone formation rate and decreasing the bone resorption rate.
Resumo:
Rapport de synthèse : L'ostéoporose est reconnue comme un problème majeur de santé publique. Comme il existe actuellement des traitements préventifs efficaces pour minimiser le risque de fracture, il est essentiel de développer des nouvelles stratégies de détection des femmes à risque de fracture. Les marqueurs spécifiques du remodelage osseux dosés dans les urines ainsi que les ultrasons quantitatifs du talon ont été étudiés comme outils cliniques pour prédire le risque fracturaire chez les femmes âgées. Il n'existe cependant que très peu de donnée sur la combinaison de ces deux outils pour améliorer la prédiction du risque de fracture. Cette étude cas-contrôle, réalisée chez 368 femmes âgées de 76 ans en moyenne d'une cohorte suisse de femmes ambulatoires, évalue la capacité discriminative entre 195 femmes avec fracture non-vertébrale à bas traumatisme et 173 femmes sans fractures - de deux marqueurs urinaires de la résorption osseuse, les pyridinolines et les deoxypyridinolines, ainsi que deux ultrasons quantitatifs du talon, le Achilles+ (GE-Lunar, Madison, USA) et le Sahara (Hologic, Waltham, USA). Les 195 patientes avec une fracture ont été choisies identiques aux 173 contrôles concernant Page, l'indice de masse corporel, le centre médical et la durée de suivi jusqu'à la fracture. Cette étude montre que les marqueurs urinaires de la résorption osseuse ont une capacité environ identique aux ultrasons quantitatifs du talon pour discriminer entre les patientes avec fracture non-vertébrale à bas traumatisme et les contrôles. La combinaison des deux tests n'est cependant pas plus performante qu'un seul test. Les résultats de cette étude peuvent aider à concevoir les futures stratégies de détection du risque fracturaire chez les femmes âgées, qui intègrent notamment des facteurs de risque cliniques, radiologiques et biochimiques. Abstract : Summary : This nested case-control analysis of a Swiss ambulatory cohort of elderly women assessed the discriminatory power of urinary markers of bone resorption and heel quantitative ultrasound for non-vertebral fractures. The tests all discriminated between cases and controls, but combining the two strategies yielded no additional relevant information. Introduction : Data are limited regarding the combination of bone resorption markers and heel quantitative bone ultrasound (QUS) in the detection of women at risk for fracture. Methods In a nested case-control analysis, we studied 368 women (mean age 76.213.2 years), 195 with low-trauma non-vertebral fractures and 173 without, matched for age, BMI, medical center, and follow-up duration, from a prospective study designed to predict fractures. Urinary total pyridinolines (PYD) and deoxypyridinolines (DPD) were measured by high performance liquid chromatography. All women underwent bone evaluations using Achilles+ and Sahara heel QUS. Results : Areas under the receiver operating-characteristic curve (AUC) for discriminative models of the fracture group, with 95% confidence intervals, were 0.62 (0.560.68) and 0.59 (0.53-0.65) for PYD and DPD, and 0.64 (0.58-0.69) and 0.65 (0.59-0.71) for Achilles+ and Sahara QUS, respectively. The combination of resorption markers and QUS added no significant discriminatory information to either measurement alone with an AUC of 0.66 (0.600.71) for Achilles+ with PYD and 0.68 (0.62-0.73) for Sahara with PYD. Conclusions : Urinary bone resorption markers and QUS are equally discriminatory between non-vertebral fracture patients and controls. However, the combination of bone resorption markers and QUS is not better than either test used alone.
Resumo:
This nested case-control analysis of a Swiss ambulatory cohort of elderly women assessed the discriminatory power of urinary markers of bone resorption and heel quantitative ultrasound for non-vertebral fractures. The tests all discriminated between cases and controls, but combining the two strategies yielded no additional relevant information. INTRODUCTION: Data are limited regarding the combination of bone resorption markers and heel quantitative bone ultrasound (QUS) in the detection of women at risk for fracture. METHODS: In a nested case-control analysis, we studied 368 women (mean age 76.2 +/- 3.2 years), 195 with low-trauma non-vertebral fractures and 173 without, matched for age, BMI, medical center, and follow-up duration, from a prospective study designed to predict fractures. Urinary total pyridinolines (PYD) and deoxypyridinolines (DPD) were measured by high performance liquid chromatography. All women underwent bone evaluations using Achilles+ and Sahara heel QUS. RESULTS: Areas under the receiver operating-characteristic curve (AUC) for discriminative models of the fracture group, with 95% confidence intervals, were 0.62 (0.56-0.68) and 0.59 (0.53-0.65) for PYD and DPD, and 0.64 (0.58-0.69) and 0.65 (0.59-0.71) for Achilles+ and Sahara QUS, respectively. The combination of resorption markers and QUS added no significant discriminatory information to either measurement alone with an AUC of 0.66 (0.60-0.71) for Achilles+ with PYD and 0.68 (0.62-0.73) for Sahara with PYD. CONCLUSIONS: Urinary bone resorption markers and QUS are equally discriminatory between non-vertebral fracture patients and controls. However, the combination of bone resorption markers and QUS is not better than either test used alone.
Resumo:
BACKGROUND: Dietary acid charge enhances bone loss. Bicarbonate or alkali diet decreases bone resorption in humans. We compared the effect of an alkaline mineral water, rich in bicarbonate, with that of an acid one, rich in calcium only, on bone markers, in young women with a normal calcium intake. METHODS: This study compared water A (per litre: 520 mg Ca, 291 mg HCO(3)(-), 1160 mg SO(4)(-), Potential Renal Acid load (PRAL) +9.2 mEq) with water B (per litre: 547 mg Ca, 2172 mg HCO(3)(-), 9 mg SO(4)(-), PRAL -11.2 mEq). 30 female dieticians aged 26.3 yrs (SD 7.3) were randomized into two groups, followed an identical weighed, balanced diet (965 mg Ca) and drank 1.5 l/d of the assigned water. Changes in blood and urine electrolytes, C-telopeptides (CTX), urinary pH and bicarbonate, and serum PTH were measured after 2 and 4 weeks. RESULTS: The two groups were not different at baseline, and showed a similar increase in urinary calcium excretion. Urinary pH and bicarbonate excretion increased with water B, but not with water A. PTH (p=0.022) and S-CTX (p=0.023) decreased with water B but not with water A. CONCLUSION: In calcium sufficiency, the acid calcium-rich water had no effect on bone resorption, while the alkaline water rich in bicarbonate led to a significant decrease of PTH and of S-CTX.
Resumo:
Matrix metalloproteinases (MMP) are considered to be key initiators of collagen degradation, thus contributing to bone resorption in inflammatory diseases. We determined whether subantimicrobial doses of doxycycline (DX) (<=10 mg kg-1 day-1), a known MMP inhibitor, could inhibit bone resorption in an experimental periodontitis model. Thirty male Wistar rats (180-200 g) were subjected to placement of a nylon thread ligature around the maxillary molars and sacrificed after 7 days. Alveolar bone loss (ABL) was measured macroscopically in one hemiarcade and the contralateral hemiarcade was processed for histopathologic analysis. Groups of six animals each were treated with DX (2.5, 5 or 10 mg kg-1 day-1, sc, 7 days) and compared to nontreated (NT) rats. NT rats displayed significant ABL, severe mononuclear cell influx and increase in osteoclast numbers, which were significantly reduced by 5 or 10 mg kg-1 day-1 DX. These data show that DX inhibits inflammatory bone resorption in a manner that is independent of its antimicrobial properties.
Resumo:
In this doctoral thesis, a tomographic STED microscopy technique for 3D super-resolution imaging was developed and utilized to observebone remodeling processes. To improve upon existing methods, wehave used a tomographic approach using a commercially available stimulated emission depletion (STED) microscope. A certain region of interest (ROI) was observed at two oblique angles: one at a standard inverted configuration from below (bottom view) and another from the side (side view) via a micro-mirror positioned close to the ROI. The two viewing angles were reconstructed into a final tomogram. The technique, named as tomographic STED microscopy, was able to achieve an axial resolution of approximately 70 nm on microtubule structures in a fixed biological specimen. High resolution imaging of osteoclasts (OCs) that are actively resorbing bone was achieved by creating an optically transparent coating on a microscope coverglass that imitates a fractured bone surface. 2D super-resolution STED microscopy on the bone layer showed approximately 60 nm of lateral resolution on a resorption associated organelle allowing these structures to be imaged with super-resolution microscopy for the first time. The developed tomographic STED microscopy technique was further applied to study resorption mechanisms of OCs cultured on the bone coating. The technique revealed actin cytoskeleton with specific structures, comet-tails, some of which were facing upwards and some others were facing downwards. This, in our opinion, indicated that during bone resorption, an involvement of the actin cytoskeleton in vesicular exocytosis and endocytosis is present. The application of tomographic STED microscopy in bone biology demonstrated that 3D super-resolution techniques can provide new insights into biological 3D nano-structures that are beyond the diffraction-limit when the optical constraints of super-resolution imaging are carefully taken into account.
Resumo:
Während der Spermatogenese wird das Element Zink an die Sulfhydrylreste der Cysteine in den Mantelfaserproteinen der Spermienflagellen gebunden. So kann in den noch unreifen Mantelfasern die ungerichtete Ausbildung von Disulfidbrücken verhindert werden. Im Zuge der Spermatozoenreifung während der Nebenhodenpassage wird dieses Zink androgenabhängig zu einem hohen Prozentsatz wieder eliminiert. Die nun gerichtete Ausbildung von Disulfidbrücken ermöglicht die Versteifung der Mantelfasern. Diese Rigidität stellt die Voraussetzung zur progressiven Motilität dar, ohne die eine Fertilisierung der Eizelle im weiblichen Genitaltrakt nicht möglich ist. Da eine negative Korrelation zwischen dem Zinkgehalt von Flagellen und ihrer Motilität besteht (Henkel et al., 1999), hat die Zinkeliminierung während der Nebenhodenpassage eine entscheidende Bedeutung in der Entwicklung der Spermatozoen. Die vorliegende Arbeit untersucht die Mechanismen der epididymalen Zinkeliminierung sowie die an diesem Prozess beteiligten Komponenten und den Verbleib des eliminierten Zinks am System des Bullen, der Ratte und des Menschen. Mittels proteinchemischer Verfahren kann im bovinen System ein zinkbindendes 60 kDa-Protein als Albumin identifiziert werden. Ein 80 kDa-Protein mit zinkbindenden Eigenschaften bleibt unidentifiziert. Die Zinkbindungskapazität der fraktionierten Proteine ist dabei im Caput epididymidis am stärksten ausgeprägt. Atomabsorptionsspektralphotometrische Untersuchungen zeigen die höchsten flagellären Zinkwerte in den Spermien des Rete testis und eine Abnahme des Zinkgehalts zwischen Nebenhodenkopf und -körper. Durch Autometallographie kann eine epitheliale Zinkresorption im Nebenhodenschwanz nachgewiesen werden. Dort erfolgt auch die basale Anreicherung des Zinks. Am Zinkstoffwechsel scheint auch der Macrophage Migration Inhibitory Factor (MIF) beteiligt zu sein. Dieser ist ein Zytokin mit Oxidoreduktasecharakter und kommt unter anderem im Nebenhodenepithel sowie in den Vesikeln des Nebenhoden-Fluids der Ratte vor. MIF zeigt in den hier durchgeführten Untersuchungen sowohl in systemhomologer, als auch in rekombinanter Form in vitro eine Zink-eliminierende Wirkung auf Rattenspermatozoen des Caputs und der Cauda epididymidis und hat somit möglicherweise Einfluss auf den Reifungsprozess der Spermien im Nebenhoden. Lit.: Henkel R, Bittner J, Weber R, Hüther F, Miska W (1999). Relevance of zinc in human sperm flagella and its relation to motility. Fertil Steril 71: 1138-1143
Resumo:
This paper discusses a study examining a new model of cholesteatoma induced bone resorption in mice using autologous implantation of pinna dermis to the surface of the skull and the role of glutamate receptors in reducing the number of osteoclasts.
Resumo:
Among the factors that contribute to the papilla formation and crestal bone preservation between contiguous implants, this animal study clinically and radiographically evaluated the interimplant distances (IDs) of 2 and 3 mm and the placement depths of Morse cone connection implants restored with platform switch. Bilateral mandibular premolars of 6 dogs were extracted, and after 12 weeks, the implants were placed. Four experimental groups were constituted: subcrestally with ID of 2 mm (2 SCL) and 3 mm (3 SCL) and crestally with ID of 2 mm (2 CL) and 3 mm (3 CL). Metallic crowns were immediately installed with a distance of 3 mm between the contact point and the bone crest. Eight weeks later, clinical measurements were performed to evaluate papilla formation, and radiographic images were taken to analyze the crestal bone remodeling. The subcrestal groups achieved better levels of papillae formation when compared with the crestal groups, with a significant difference between the 3 SCL and 3 CL groups (P = .026). Radiographically, the crestal bone preservation was also better in the subcrestal groups, with statistically significant differences between the 2SCL and 2CL groups (P = .002) and between the 3SCL and 3CL groups (P = .008). With the present conditions, it could be concluded that subcrestal implant placement had a positive impact on papilla formation and crestal bone preservation, which could favor the esthetic of anterior regions. However, the IDs of 2 and 3 mm did not show significantly different results.
Resumo:
A favorable prognosis after tooth avulsion depends on some variables, such as the extra-alveolar period and storage medium. Vitality of the periodontal ligament cells is considered a critical factor for a successful outcome without root resorption. The dental surgeon is provided with clinical information and radiographic findings to establish a diagnosis and may rely on current available guidelines. Once trauma has occurred, treatment must be quick and effective, and periodic follow-up must be performed. Clinical, radiographic, and histologic characteristics for each type of root resorption due to tooth replantation are presented, with the aim to provide information for the diagnosis and treatment of healing complications.
Resumo:
Background and purpose: The inflammation-resolving lipid mediator resolvin E1 (RvE1) effectively stops inflammation-induced bone loss in vivo in experimental periodontitis. It was of interest to determine whether RvE1 has direct actions on osteoclast (OC) development and bone resorption. Experimental approach: Primary OC cultures derived from mouse bone marrow were treated with RvE1 and analysed for OC differentiation, cell survival and bone substrate resorption. Receptor binding was measured using radiolabelled RvE1. Nuclear factor (NF)-kappa B activation and Akt phosphorylation were determined with western blotting. Lipid mediator production was assessed with liquid chromatography tandem mass spectrometry. Key results: OC growth and resorption pit formation were markedly decreased in the presence of RvE1. OC differentiation was inhibited by RvE1 as demonstrated by decreased number of multinuclear OC, a delay in the time course of OC development and attenuation of receptor activator of NF-kappa B ligand-induced nuclear translocation of the p50 subunit of NF-kappa B. OC survival and apoptosis were not altered by RvE1. Messenger RNA for both receptors of RvE1, ChemR23 and BLT(1) is expressed in OC cultures. Leukotriene B(4) (LTB(4)) competed with [(3)H] RvE1 binding on OC cell membrane preparations, and the LTB(4) antagonist U75302 prevented RvE1 inhibition of OC growth, indicating that BLT(1) mediates RvE1 actions on OC. Primary OC synthesized the RvE1 precursor 18R-hydroxy-eicosapentaenoic acid and LTB(4). Co-incubation of OC with peripheral blood neutrophils resulted in transcellular RvE1 biosynthesis. Conclusions and implications: These results indicate that RvE1 inhibits OC growth and bone resorption by interfering with OC differentiation. The bone-sparing actions of RvE1 are in addition to inflammation resolution, a direct action in bone remodelling.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study evaluated periapical tissue healing and orthodontic root resorption of endodontically treated teeth sealed with calcium hydroxide in dogs. The sample consisted of three contralateral pairs of maxillary incisors and two contralateral pairs of mandibular incisors in each of two dogs using a split mouth design. After biomechanical preparation of the teeth in the first group (n = 10), a Ca(OH)(2) dressing was placed for 14 days before root canal filling with Ca(OH)(2)-based sealer (Sealapex) and gutta-percha points. In the second group (n = 10), root canals were obturated immediately after the mechanical preparation with gutta-percha points and zinc oxide and eugenol (ZOE)-based sealer (Endofill). After completion of endodontic treatment, the teeth were moved with an orthodontic appliance with a calibrated force of 200 g, reactivated every 21 days. After 105 days, the animals were killed and the teeth were removed upon completion of active treatment, without a period of recovery, and prepared for histomorphological analysis. All sections of each tooth were graded subjectively on a scale from one to four to obtain the average of the 16 histomorphological parameters analysed. Evaluation of the differences between the two treatment protocols was made with Mann-Whitney U-test. It was observed that the teeth treated with Ca(OH)(2)-based materials provided better outcomes (P = 5%), with complete repair of all root resorption areas, high rate of biological closure of the main canal and apical accessory canals by newly formed cementum, less intense and extensive chronic inflammatory infiltrate, and better organization of the periodontal ligament. Under the tested conditions, Ca(OH)(2)-based materials had a favourable action on periapical tissue healing and repair of orthodontic root resorption in endodontically treated dogs' teeth.