962 resultados para RESONANCE EFFECT
Resumo:
Copper is a low-cost plasmonic metal. Efficient photocatalysts of copper nanoparticles on graphene support are successfully developed for controllably catalyzing the coupling reactions of aromatic nitro compounds to the corresponding azoxy or azo compounds under visible-light irradiation. The coupling of nitrobenzene produces azoxybenzene with a yield of 90 % at 60 °C, but azobenzene with a yield of 96 % at 90 °C. When irradiated with natural sunlight (mean light intensity of 0.044 W cm−2) at about 35 °C, 70 % of the nitrobenzene is converted and 57 % of the product is azobenzene. The electrons of the copper nanoparticles gain the energy of the incident light through a localized surface plasmon resonance effect and photoexcitation of the bound electrons. The excited energetic electrons at the surface of the copper nanoparticles facilitate the cleavage of the NO bonds in the aromatic nitro compounds. Hence, the catalyzed coupling reaction can proceed under light irradiation and moderate conditions. This study provides a green photocatalytic route for the production of azo compounds and highlights a potential application for graphene.
Resumo:
Metal nanoparticle photocatalysts have attracted recent interest due to their strong absorption of visible and ultraviolet light. The energy absorbed by the metal conduction electrons and the intense electric fields in close proximity, created by the localized surface plasmon resonance effect, makes the crucial contribution of activating the molecules on the metal nanoparticles which facilitates chemical transformation. There are now many examples of successful reactions catalyzed by supported nanoparticles of pure metals and of metal alloys driven by light at ambient or moderate temperatures. These examples demonstrate these materials are a novel group of efficient photocatalysts for converting solar energy to chemical energy and that the mechanisms are distinct from those of semiconductor photocatalysts. We present here an overview of recent research on direct photocatalysis of supported metal nanoparticles for organic synthesis under light irradiation and discuss the significant reaction mechanisms that occur through light irradiation.
Resumo:
The frequency response of the dielectric constant (epsilon(r)), the loss tangent (tan delta) and impedance Z of potassium acid phthalate (KAP) single crystals, monitored along the polar axis, exhibit strong resonances in the frequency range 50-200 kHz, depending on the dimensions of the sample. The observed resonance effect, which is strongly dependent on the geometric shape and size of the sample, is attributed to its piezoelectric nature. The resonance peak positions have been monitored as a function of both temperature and uniaxial pressure. The stiffness coefficient (C), computed based on the resonance data, is found to decrease with increasing temperature and increase with increasing pressure. The electro-mechanical coupling coefficient (k), obtained by resonance-anti-resonance method, has also been found to increase with rise in temperature. The epsilon(r) behaviour along the polar axis, as a function of temperature is consistent with that of k. The preliminary results on the influence, of partial replacement of K+ ions in the KAP crystal by Cs+ and Li+ ions, on the observed piezoelectric resonance effects are also included.
Resumo:
We demonstrate observation of Raman signals of different analytes adsorbed on carbonaceous materials, such as, chemically reduced graphene, graphene oxide (GO), multi-walled carbon nanotube (MWCNT), graphite and activated carbon. The analytes selected for the study were Rhodamine 6G (R6G) (in resonant conditions), Rhodamine B (RB), Nile blue (NBA), Crystal Violet (CV) and acetaminophen (paracetamol). All the analytes except paracetamol absorb and fluoresce in the visible region. In this article we provide experimental evidence of the fact that observation of Raman signals of analytes on such carbonaceous materials are more due to resonance effect, suppression of fluorescence and efficient adsorption and that this property in not unique to graphene or nanotubes but prevalent for various type of carbon materials.
Resumo:
The conformation of microperoxidase-11 (MP-11) adsorbed on roughened silver electrodes was studied using surface-enhanced Fourier transform Raman spectroscopy. The results demonstrate that MP-11 was initially adsorbed via its polypeptide chain with a alpha-helix conformation, as indicated by the enhancement of the characteristic bands related to the amides I and III. The weak resonance effect of the porphyrin macrocycle in the near IR region contributes to the spectrum of the heme group. The presence of imidazole as the sixth ligand to the heme iron influences the conformation of the polypeptide chain of MP-11 on the electrode surface. Evaporation of solvent water results in an opened conformation of the adsorbed MP-11. which allows the heme group to contact the electrode surface directly.
Resumo:
Observed by physicists in the 1930s, the nuclear magnetic resonance effect has been exploited by chemists in structural analyses for decades.
Resumo:
We study the trajectory of Efimov states for a trapped three-boson system when the two-body scattering length a is changed. We show that these states follow the route virtual-bound-continuum resonance state when a is varied, respectively, from large positive to negative values. For a < 0, we include the triatomic continuum resonance effect to extend the three-body recombination length for trap temperatures greater than zero. For a > 0, we predict trimer binding energies based on the recombination length and the two-body scattering length.
Resumo:
Pós-graduação em Física - FEG
Resumo:
This study is about the role and operation of ‘third sector’ organisations (TSOs) within the Taiwanese social welfare context. TSOs have increased dramatically and become actively involved in social service provision. This phenomenon has not only had significant impact on the development and operation of TSOs in Taiwan but it is also of increasing interest to public policy academics. The latter are especially interested in the implications for the government-third sector relationship. This research examines the reasons why TSOs have been established, why they actively participate in social service provision, and their role and operation within the social welfare context of Taiwan. The study has both quantitative and qualitative data. It sampled ‘social service’ and ‘charitable’ organisations (SSCOs), which are the main type of TSOs in Taiwan, to examine their role, operation and interaction with government. Questionnaires were mailed to collect quantitative data first. After the quantitative data were collected and analysed, semi-structured interviews were undertaken to collect qualitative data. The study found that TSOs in Taiwan exist in a highly institutionalised environment, which is affected by traditional Confucian ideas and contemporary Western ideas such as social justice and civil rights. The rapid growth of TSOs has a strong connection with the desire to fill social service gaps left by government and family. TSOs mainly play the role of service provider rather than that of advocate. They cooperate with government in social service provision and have developed different types of symbiotic relationships with government. A ‘resonance effect’ between government and TSOs was also found as they implement social policy.
Resumo:
© 2016, Springer-Verlag Berlin Heidelberg.Nanoparticles are being explored in many different applications due to the unique properties offered by quantum effects. To broaden the scope of these applications, the deposition of nanoparticles onto substrates in a simple and controlled way is highly desired. In this study, we use resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) for the deposition of metallic, silver nanoparticles for plasmonic applications. We find that RIR-MAPLE, a simple and versatile approach, is able to deposit silver nanoparticles as large as 80 nm onto different substrates with good adhesion, regardless of substrate properties. In addition, the nanoparticle surface coverage of the substrates, which result from the random distribution of nanoparticles across the substrate per laser pulse, can be simply and precisely controlled by RIR-MAPLE. Polymer films of poly(3-hexylthiophene-2,5-diyl) (P3HT) are also deposited by RIR-MAPLE on top of the deposited silver nanoparticles in order to demonstrate enhanced absorption due to the localized surface plasmon resonance effect. The reported features of RIR-MAPLE nanoparticle deposition indicate that this tool can enable efficient processing of nanoparticle thin films for applications that require specific substrates or configurations that are not easily achieved using solution-based approaches.
Resumo:
The charge transfer-mediated surface enhanced Raman scattering (SERS) of crystal violet (CV) molecules that were chemically conjugated between partially polarized silver nanoparticles and optically smooth gold and silver substrates has been studied under off-resonant conditions. Tyrosine molecules were used as a reducing agent to convert silver ions into silver nanoparticles where oxidised tyrosine caps the silver nanoparticle surface with its semiquinone group. This binding through the quinone group facilitates charge transfer and results in partially oxidised silver. This establishes a chemical link between the silver nanoparticles and the CV molecules, where the positively charged central carbon of CV molecules can bind to the terminal carboxylate anion of the oxidised tyrosine molecules. After drop casting Ag nanoparticles bound with CV molecules it was found that the free terminal amine groups tend to bind with the underlying substrates. Significantly, only those CV molecules that were chemically conjugated between the partially polarised silver nanoparticles and the underlying gold or silver substrates were found to show SERS under off-resonant conditions. The importance of partial charge transfer at the nanoparticle/capping agent interface and the resultant conjugation of CV molecules to off resonant SERS effects was confirmed by using gold nanoparticles prepared in a similar manner. In this case the capping agent binds to the nanoparticle through the amine group which does not facilitate charge transfer from the gold nanoparticle and under these conditions SERS enhancement in the sandwich configuration was not observed.
Resumo:
We propose an exactly solvable model for the two-state curve-crossing problem. Our model assumes the coupling to be a delta function. It is used to calculate the effect of curve crossing on the electronic absorption spectrum and the resonance Raman excitation profile.
Resumo:
The Zeeman effect of chlorine nuclear quadrupole resonance in polycrystalline samples of 2,6-, 2,5 and 3,5-dichlorophenol has been investigated at room temperature in order to study the effect of hydrogen bonding on the electric field gradient asymmetry parameter n. While the two n.q.r. lines in 3,5-dichlorophenol gave an asymmetry parameter of 10%, those in 2,6- and 2,5-dichlorophenol gave different values of n for the two chlorines. The chlorine atom which is ortho to the OH group and involved in hydrogen bonding (i.e., corresponding to the low frequency line) gave an asymmetry parameter of 0.21 in 2,6-dichlorophenol and 0.17 in 2,5-dichlorophenol while the other chlorine (i.e., corresponding to the high frequency line) gave a lower value of 0.12 in 2,6-dichlorophenol and 0.11 in 2,5-dichlorophenol. These values of n are discussed in terms of hydrogen bonding and bond parameters.
Resumo:
The Zeeman effect of NQR was studied in 1-chloro-2,4-dinitrobenzene. A low value of the asymmetry parameter (0.10) was obtained. Four physically inequivalent field gradients were located and their orientations in the crystallographic abc system were determined using symmetry considerations. From these data the orientations of the molecules in the unit cell were determined. The results agree well with the two-dimensional x-ray structural data. The bond characters of the C[Single Bond]Cl bond were calculated, and the values compare well with those generally obtained for C[Single Bond]Cl bonds in chlorine derivatives of benzene. ©1973 The American Institute of Physics.
Resumo:
Abstract is not available.