981 resultados para REPARO ÓSSEO
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Imunomarcação da OPG e RANKL no reparo ósseo após a cirurgia de elevação do seio maxilar com Bio-Oss
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study used histomorphometric analysis to investigate the effect of sodium alendronate, used for the treatment of osteoporosis, on the repair of surgically-induced bone defects in the tibia of castrated rats. Methods: The castrated animals were given subcutaneous injections of sodium alendronate (0.7mg/Kg) diluted in saline once a week; the control animals were given the same dose of saline. At 16, 30 and 44 days after the first injection of sodium alendronate, the animals were sacrificed and the right tibias were removed and processed for histomorphometric analysis. The volumetric bone mineral density was estimated by a reticular grid (25 points) attached to a light microscope. The number of points on the bone tissue was counted in the histological sections, totaling 100 points/animal. Results: The results revealed that sodium alendronate stimulated bone formation in castrated rats in all occasions, mainly at 16 and 30 days. Conclusion: Sodium alendronate affects mineral homeostasis, promoting bone repair.
Resumo:
The sodium alendronate (AS), considered as inhibitor in the osteoclasts- mediated bone resorption, promotes final effect of inhibition of resorption and increases bone mass. The objective of this research was to assess, by histomorphometry, the effect of sodium alendronate in repair bone of ovariectomized rats, in which there was performed a bone defect in the right tibia. The treated rats received a subcutaneous injection of sodic alendronate once a week, at 0.7 mg / kg, diluted with saline solution; the controls received the same volume of saline solution. In the periods of 16, 30 and 44 days after the first dose of AS, the animals were sacrificed, the right tibia was removed and processed for histomorphometric analysis. Four non-serial fields were used for the density volume quantification utilizing an integrative eyepiece with 25 points, totalizing 100 points per animal. Based on the results, the present study concludes that the ovariectomy induced osteoporosis and that the AS stimulated the bone formation. In addition, the ovariectomy decreased the estrogen levels. However, this procedure did not significantly influence the action of sodic alendronate.
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
The response of bone metabolism is directly related to hormonal factors and mechanical stimuli that the bone is exposed. The ultrasonic energy on bone healing have been shown to be crucial for the stimulation and improvement in quality of newly formed tissue. The aim of this study was to analyze the action of low intensity ultrasound on bone healing of tibial osteotomy in rats subjected to tail suspension, through histological analysis and histomorphometry. Eighteen Rattus norvegicus albinos, Wistar, adults were divided into three groups, arranged as follows: G1 (n = 6), who remained free for a period of 15 days, G2 (n = 5), suspended by the tail for a period of 15 days and G3 (n = 7), suspended by the tail for a period of 36 days. In all three groups, both tibias were subjected to mono-cortical bone injury 4X2 mm in the medial region of the diaphysis, and the left limb was used as control and the right limb undergoing treatment with ultrasound (U.S.). The right tibia was treated with pulsed ultrasound at a frequency of 1.5 MHz, duty cycle 1:4, 30mW/cm2, for 12 sessions of 20 minutes each. Samples of tibia were subjected to histological analysis, blindly, with light microscopy and histomorphometric analysis by specific software Image-Pro 6.1. The average percentage of new bone formation were subjected to analysis of variance in subdivided parcels and multiple comparison test "Student-Newman-Keuls (SNK), with a significance level of 5%. The average values and standard deviations of the percentage of newly formed bone for the groups showed the least amount of bone repair G1t (13.62% ± 4.88%) - G1c (8.68% ± 4.16%) compared G2t groups (27.17% ± 11.36%) - G2c (10.10% ± 7.90%) and G3t (23.19% ± 5.61%) - G3c (15.74% ± 7 08%). However, the mean values and standard deviations of the percentage of newly formed bone repair in the tibia treated G2t and G3t were significantly higher when compared to the repair of tibia in the control group (G2c and G3c). Consequently, we conclude that ultrasound has helped to accelerate bone repair in both the presence and absence of cargo.
Resumo:
Low-intensity laser has been used as a physical agent in various fields of medical sciences such as bone and tissue repair. Meanwhile little is known about its effects in adverse conditions such as abolition of load and osteopenic. With the assumption that the laser Ga-Al-As accelerates the process of bone consolidation, goal of this study was to evaluate bone mineral density (BMD) in incomplete transverse osteotomies of tibia in adult rats, treated with low power laser therapy in three different groups: G1 (n = 10), reference 15 days; G2 (n=10), suspended by the tail and, accordingly, treated with laser for 12 days; G3 (n = 10), suspended by the tail by 36 days and that after 21 days, there was laser treatment for 12 days. The right tibia treated with laser and left served as control. The laser was used to Ga-Al-As, DMC - Flash Lase® III, with wavelength 830nm, 100 mW, 4J, 140 J / cm ², 40s of application in 12 sessions. It was used densitometer-Lunar DPX®, with computer program for "small animals", and the analysis of BMD was made in the bone throughout the region and the osteotomy. The results showed no efficacy of laser therapy in the process of bone repair, both in animals of group 1, as in group 2 and 3. It follows that either the low-power laser was not an effective performance or the effects of laser therapy is not only manifested at the site of irradiation as well as the systemic level.