743 resultados para REMEDIATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary Prototype sand-worm filtration beds were constructed at two prawn farms and one fish farm to assess and demonstrate their polychaete (marine worm) production and wastewater remediation capacities at semi-commercial scale. Wastewater treatment properties were monitored and worms produced were assessed and either sold for bait or used by the farms’ hatcheries as broodstock (prawn or fish breeder) feed. More than 34 megalitres of prawn- and fish-pond water was beneficially treated in the 116-319-d trial. The design of the polychaete-assisted sand filters (PASFs) constructed at each farm affected their water handling rates, which on average ranged from 315 to 1000 L m-2 d-1 at the three farms. A low profile design incorporating shallow bunded ponds made from polyethylene liner and timber stakes provided the easiest method of construction. This simple design applied at broad scale facilitated the highest quantities of treated water and the greatest worm production. Designs with higher sides increased the head pressure above the sand bed surface, thus increasing the amount of water that could be treated each day. Most water qualities were affected in a similar way to that demonstrated in the previous tank trials: dissolved oxygen, pH, total suspended solids and chlorophyll a levels were all consistently significantly lowered as pond water percolated through the sand bed, and dissolved forms of nitrogen and phosphorus were marginally increased on several occasions. However, unlike the previous smaller-scale tank trials, total nitrogen (TN) and total phosphorus (TP) levels were both significantly lowered by these larger-scale PASFs. The reasons for this are still unclear and require further research. Maximum TN and TP removals detected in the trial were 48.8% and 67.5%, respectively, and average removals (in unfed beds) at the three farms ranged from 20.0 to 27.7% for TN and from 22.8 to 40.8% for TP. Collectively, these results demonstrate the best suspended solids, chlorophyll and macronutrient removal capacities so far reported for any mariculture wastewater treatment methodology to date. Supplemental feeding of PASFs with fish meal was also investigated at one farm as a potential means of increasing their polychaete biomass production. Whilst fed beds produced higher biomass (152 ± 35 g m-2) compared with unfed beds (89 ± 17 g m-2) after 3.7 months of operation, the low number of replicates (2) prevented statistically significant differences from being demonstrated for either growth or survival. At harvest several months later, worm biomass production was estimated to be similar to, or in slight excess of, previously reported production levels (300-400 g m-2). Several qualities of filtered water appear to have been affected by supplemental feeding: it appeared to marginally lower dissolved oxygen and pH levels, and increased the TN and TP levels though not so much to eliminate significant beneficial water treatment effects. Periodic sampling during an artificial-tide demonstrated the tendency for treated-water quality changes during the first hour of filtration. Total nitrogen and ammonia peaked early in the tidal flow and then fell to more stable levels for the remainder of the filtration period. Other dissolved nutrients also showed signs of this sand-bed-flushing pattern, and dissolved oxygen tended to climb during the first hour and become more stable thereafter. These patterns suggest that the routine sampling of treated water undertaken at mid-inflow during the majority of the wider study would likely have overestimated the levels of TN and dissolved nutrients discharged from the beds, and hence underestimated the PASFs treatment efficacies in this regard. Analyses of polychaete biomass collected from each bed in the study revealed that the worms were free from contamination with the main prawn viruses that would create concerns for their feeding to commercial prawn broodstock in Australia. Their documented proximal and nutritional contents also provide a guide for hatchery operators when using live or frozen stock. Their dry matter content ranged from 18.3 to 22.3%, ash ranged from 10.2 to 14.0%, gross energy from 20.2 to 21.5 MJ kg-1, and fat from 5.0 to 9.2%. Their cholesterol levels ranged from 0.86 to 1.03% of dry matter, whilst total phospholipids range from 0.41 to 0.72%. Thirty-one different fatty acids were present at detectable (≥0.005% of dry matter) levels in the sampled worm biomass. Palmitic acid was by far the most prevalent fatty acid detected (1.21 ± 0.18%), followed by eicosapentaenoic (EPA) (0.48 ± 0.03%), stearic (0.46 ± 0.04%), vaccenic (0.38 ± 0.05%), adrenic (0.35 ± 0.02%), docosadienoic (0.28 ± 0.02%), arachidonic (AA) (0.22 ± 0.01%), palmitoleic (0.20 ± 0.04%) and 23 other fatty acids with average contents of less than 0.2% of dry matter. Supplemental feeding with fish meal at one farm appeared to increase the docosahexaenoic acid (DHA) content of the worms considerably, and modify the average AA : EPA : DHA from 1.0 : 2.7 : 0.3 to 1.0 : 2.0 : 1.1. Consistent with previous results, the three most heavily represented amino acids in the dry matter of sampled worms were glutamic acid (8.5 ± 0.2%), aspartic acid (5.5 ± 0.1%) and glycine (4.9 ± 0.5%). These biomass content results suggest that worms produced in PASF systems are well suited to feeding to prawn and fish broodstock, and provide further strong evidence of the potential to modify their contents for specific nutritional uses. The falling wild-fishery production of marine bloodworms in Queensland is typical of diminishing polychaete resources world-wide and demonstrates the need to develop sustainable production methods here and overseas. PASF systems offer the dual benefits of wastewater treatment for environmental management and increased productivity through a valuable secondary crop grown exclusively on waste nutrients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the 1970s, acid sulfate soils (ASS) distributed within about 720 ha of predominantly mangrove and salt pan wetlands at East Trinity in north Queensland were developed after the area was isolated from tidal flooding by a surrounding seawall and the installation of tidal gates on major drainage creeks. Following drainage and oxidation of these estuarine acidic sediments, resultant acid leachate caused considerable, ongoing environmental problems including regular fish kills. A rehabilitation program covering much of these former tidal wetlands commenced in 2000 using a lime-assisted tidal exchange management regime. Changes in the established populations of estuarine fish and crustaceans were monitored in the two creeks (Firewood and Hills Creeks) where tidal flows were reinstated. In Firewood Creek between 2001 and 2005, there was a progressive increase in fish species richness, diversity and abundance. The penaeid prawn Fenneropenaeus merguiensis was a major component of the cast net catches in the lower sections of both Firewood and Hills Creeks but its relative abundance decreased upstream of the tidal gates on the seawall. Well established stocks of predominantly juvenile, male Scylla serrata resident upstream of the tidal gates indicated suitable habitats with acceptable water and sediment quality and adequate availability of food. The regular fish kills that occurred prior to the management regime abated and, overall, the implementation of the rehabilitation program is yielding positive benefits for the local fisheries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medium bedding sand which is commonly available in coastal sedimentary deposits, and a marine polychaete-worm species from Moreton Bay recently classified as Perinereis helleri (Nereididae), were deployed in a simple low-maintenance sand filter design that potentially has application at large scale. Previous work had shown that this physical and biological combination can provide a new option for saline wastewater treatment, since the worms help to prevent sand filter blocking with organic debris and offer a profitable by-product. To test the application of this new concept in a commercial environment, six 1.84 m2 Polychaete-assisted sand filters were experimentally tested for their ability to treat wastewater from a semi-intensive prawn culture pond. Polychaetes produced exclusively on the waste nutrients that collected in these gravity-driven sand filters were assessed for their production levels and nutritional contents. Water parameters studied included temperature, salinity, pH, dissolved oxygen (DO), oxidation/ reduction potential (redox), suspended solids, chlorophyll a, biological oxygen demand (BOD), and common forms of nitrogen and phosphorus. Pond water which had percolated through the sand bed had significantly lower pH, DO and redox levels compared with inflow water. Suspended solids and chlorophyll a levels were consistently more than halved by the process. Reductions in BOD appeared dependant on regular subsurface flows. Only marginal reductions in total nitrogen and phosphorus were documented, but their forms were altered in a potentially useful way: dissolved forms (ammonia and orthophosphate) were generated by the process, and this remineralisation also seemed to be accentuated by intermittent flow patterns. Flow rates of approximately 1,500 L m-2 d-1 were achieved suggesting that a 1 ha polychaete bed of this nature could similarly treat the discharge from a 10 ha semi-intensive prawn farm. Sixteen weeks after stocking sand beds with one-month-old P. helleri, over 3.6 kg of polychaete biomass (wet weight) was recovered from the trial. Production on a sand bed area basis was 328 g m-2. Similar (P>0.05) overall biomass production was found for the two stocking densities tested (2000 and 6000 m-2; n = 3), but survival was lower and more worms were graded as small (<0.6 g) when produced at the higher density (28.2 ± 1.5 % and approx. 88 %, respectively) compared with the lower density (46.8 ± 4.4 % and approx. 76 %, respectively). When considered on a weight for weight basis, about half of the worm biomass produced was generally suitable for use as bait. The nutritional contents of the worms harvested were analysed for different stocking densities and graded sizes. These factors did not significantly affect their percentages of dry matter (DM) (18.23 ± 0.57 %), ash (19.77 ± 0.80 % of DM) or gross energy 19.39 ± 0.29 MJ kg-1 DM) (n = 12). Although stocking density did not affect the worms’ nitrogen and phosphorus contents, small worms had a higher mean proportion of nitrogen and phosphorus (10.57 ± 0.17 % and 0.70 ± 0.01 % of DM, respectively) than large worms (9.99 ± 0.12 % and 0.65 ± 0.01 % of DM, respectively) (n = 6). More lipid was present in large worms grown at the medium density (11.20 ± 0.19 %) compared with the high density (9.50 ± 0.31 %) and less was generally found in small worms (7.1-7.6 % of DM). Mean cholesterol and total phospholipid levels were 5.24 ± 0.15 mg g-1 and 13.66 ± 2.15 mg g-1 DM, respectively (n = 12). Of the specific phospholipids tested, phosphatidyl-serine or sphingomyelin were below detection limits (<0.05 mg g-1), whilst mean levels of phosphatidyl-ethanolamine, phosphatidyl-inositol, phosphatidyl-choline and lysophosphatidyl-choline were 6.89 ± 1.09, 0.89 ± 0.26, 4.04 ± 1.17 and 1.84 ± 0.37 mg g-1, respectively (n = 12). Culture density generally had a more pronounced effect on phospholipid contents than did size of worms. By contrast, worm size had a more pronounced effect on total fatty acid contents, with large worms containing significantly higher (P<0.001) levels on a DM basis (46.88 ± 2.46 mg g-1) than smaller worms (27.76 ± 1.28 mg g-1). A very broad range of fatty acids were detected with palmitic acid being the most heavily represented class (up to 14.23 ± 0.49 mg g-1 DM or 27.28 ± 0.22 % of total fatty acids). Other heavily represented classes included stearic acid (7.4-8.8 %), vaccenic acid (6.8-7.8 %), arachidonic acid (3.5-4.4 %), eicosapentaenoic acid (9.9-13.8 %) and docosenoic acid (5.7-7.0 %). Stocking density did not affect (P>0.05) the levels of amino acids present in polychaete DM, but there was generally less of each amino acid tested on a weight per weight basis in large worms than in small worms. This difference was significant (P<0.05) for the most heavily represented classes being glutamic acid (73-77 mg g-1), aspartic acid (50-54 mg g-1), and glycine (46-53 mg g-1). These results demonstrate how this polychaete species can be planted and sorted at harvest according to various strategies aimed at providing biomass with specific physical and nutritional qualities for different uses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are many potential bioremediation approaches that may be suitable for prawn farms in Queensland. Although most share generally accepted bioremediation principles, advocacy for different methods tends to vary widely. This diversity of approach is particularly driven by the availability and knowledge of functional species at different localities around the world. In Australia, little is known about the abilities of many native species in this regard, and translocation and biosecurity issues prevent the use of exotic species that have shown potential in other countries. Species selected must be tolerant of eutrophic conditions and ecological shifts, because prawn pond nutrient levels and pathways can vary with different assemblages of autotrophic and heterotrophic organisms. Generally, they would be included in a constructed ecosystem because of their functional contributions to nutrient cycling and uptake, and to create nutrient sinks in forms of harvestable biomass. Wide salinity, temperature and water quality tolerances are also valuable attributes for selected species due to the sometimes-pronounced effects of environmental extremes, and to provide over-wintering options and adequate safety margins in avoiding mass mortalities. To practically achieve these bioremediation polycultures on a large scale, and in concert with the operations of a prawn farm, methods involving seed production, stock management, and a range of other farm engineering and product handling systems need to be reliably achievable and economically viable. Research funding provided by the Queensland Government through the Aquaculture Industry Development Initiative (AIDI) 2002-04 has enabled a number of technical studies into biological systems to treat prawn farm effluent for recirculation and improved environmental sustainability. AIDI bioremediation research in southern Queensland was based at the Bribie Island Aquaculture Research Centre (BIARC), and was conducted in conjunction with AIDI genetics and selection research, and a Natural Heritage Trust (NHT) funded program (Coast and Clean Seas Project No.717757). This report compilation provides a summary of some of the work conducted within these programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several species of oysters, clams and mussels are currently being used around the world to create extra profits and help remediate waste-waters from mariculture operations. To identify opportunities and potentially suitable species of bivalves for remediation of prawn farm effluent in Australia, recent literature dealing with bivalve filtration is reviewed, and species occurring naturally in a banana prawn, Penaeus (Fenneropenaeus) merguiensis, grow-out pond and effluent streams at the Bribie Island Aquaculture Research Centre (BIARC) were collected, identified and assessed in terms of their tolerance of high silt loadings over 3 months. Three bivalve species predominated in the BIARC case study. These were the mud ark, Anadara trapezia, the rock oyster, Dendostrea folium, and the pearl shell, Pinctada maculata. The mud ark demonstrated the highest tolerance of silt loading (99% survival), followed by pearl shells and rock oysters (88 and 63% survival respectively).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the trial is to assess the growth and production level of cultured Polychaetes, and wastewater remediation properties of Polychaete beds at a commercial prawn farm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The utility of rice husk as an adsorbent for metal ions such as iron, zinc and copper from acid mine water was assessed. The adsorption isotherms exhibited Langmuirian behavior and were endothermic in nature. The free energy values for adsorption of the chosen metal ions onto rice husk were found to be highly negative attesting to favorable interaction. Over 99% Fe3+, 98% of Fe2+ and Zn2+ and 95% Cu2+ uptake was achieved from acid mine water, with a concomitant increase in the pH value by two units using rice husk. The remediation studies carried out on acid mine water and simulated acid mine water pretreated with rice husk indicated successful growth of Desulfotomaculum nigrificans (D. nigrificans). The amount of sulphate bioreduction in acid mine water at an initial pH of 5.3 was enhanced by D. nigrificans from 21% to 40% in the presence of rice husk filtrate supplemented with carbon and nitrogen. In simulated acid mine water with fortified husk filtrate, the sulphate reduction was even more extensive, with an enhancement to 73%. Concurrently, almost 90% Fe2+, 89% Zn2+ and 75% Cu2+ bioremoval was attained from simulated acid mine water. Metal adsorption by rice husk was confirmed in desorption experiments in which almost complete removal of metal ions from the rice husk was achieved after two elutions using 1 M HCl. The possible mechanisms of metal ion adsorption onto rice husk and sulphate reduction using D. nigrificans are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photocatalysis refers to the oxidation and reduction reactions on semiconductor surfaces, mediated by the valence band holes and conduction band electrons, which are generated by the absorption of ultraviolet or visible light radiation. Photocatalysis is widely being practiced for the degradation and mineralization of hazardous organic compounds to CO2 and H2O, reduction of toxic metal ions to their non-toxic states, deactivation and destruction of water borne microorganisms, decomposition of air pollutants like volatile organic compounds, NOx, CO and NH3, degradation of waste plastics and green synthesis of industrially important chemicals. This review attempts to showcase the well established mechanism of photocatalysis, the use of photocatalysts for water and air pollution control,visible light responsive modified-TiO2 and non-TiO2 based materials for environmental and energy applications, and the importance of developing reaction kinetics for a comprehensive understanding and design of the processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We highlight the need for a comprehensive, multi-disciplinary approach for the development of cost-effective water remediation methods. Combining ``chimie douce'' and green chemical principles seems essential for making these technologies economically viable and socially relevant (especially in the developing world). A comprehensive approach to water remediation will take into account issues such as nanotoxicity, chemical yield, cost, and ease of deployment in reactors. By considering technological challenges that lie ahead, we will attempt to identify directions that are likely to make photocatalytic water remediation a more global technology than it currently is. (C) 2013 Elsevier Ltd. All rights reserved