940 resultados para REGRESSION-ANALYSIS
Resumo:
Airborne concentrations of Poaceae pollen have been monitored in Poznań for more than ten years and the length of the dataset is now considered sufficient for statistical analysis. The objective of this paper is to produce long-range forecasts that predict certain characteristics of the grass pollen season (such as the start, peak and end dates of the grass pollen season) as well as short-term forecasts that predict daily variations in grass pollen counts for the next day or next few days throughout the main grass pollen season. The method of forecasting was regression analysis. Correlation analysis was used to examine the relationship between grass pollen counts and the factors that affect its production, release and dispersal. The models were constructed with data from 1994-2004 and tested on data from 2005 and 2006. The forecast models predicted the start of the grass pollen season to within 2 days and achieved 61% and 70% accuracy on a scale of 1-4 when forecasting variations in daily grass pollen counts in 2005 and 2006 respectively. This study has emphasised how important the weather during the few weeks or months preceding pollination is to grass pollen production, and draws attention to the importance of considering large-scale patterns of climate variability (indices of the North Atlantic Oscillation) when constructing forecast models for allergenic pollen.
Resumo:
It is well known that regression analyses involving compositional data need special attention because the data are not of full rank. For a regression analysis where both the dependent and independent variable are components we propose a transformation of the components emphasizing their role as dependent and independent variables. A simple linear regression can be performed on the transformed components. The regression line can be depicted in a ternary diagram facilitating the interpretation of the analysis in terms of components. An exemple with time-budgets illustrates the method and the graphical features
Resumo:
Resumen tomado de la publicación
Resumo:
Multiple regression analysis is a statistical technique which allows to predict a dependent variable from m ore than one independent variable and also to determine influential independent variables. Using experimental data, in this study the multiple regression analysis is applied to predict the room mean velocity and determine the most influencing parameters on the velocity. More than 120 experiments for four different heat source locations were carried out in a test chamber with a high level wall mounted air supply terminal at air change rates 3-6 ach. The influence of the environmental parameters such as supply air momentum, room heat load, Archimedes number and local temperature ratio, were examined by two methods: a simple regression analysis incorporated into scatter matrix plots and multiple stepwise regression analysis. It is concluded that, when a heat source is located along the jet centre line, the supply momentum mainly influences the room mean velocity regardless of the plume strength. However, when the heat source is located outside the jet region, the local temperature ratio (the inverse of the local heat removal effectiveness) is a major influencing parameter.
Resumo:
Regression models for the mean quality-adjusted survival time are specified from hazard functions of transitions between two states and the mean quality-adjusted survival time may be a complex function of covariates. We discuss a regression model for the mean quality-adjusted survival (QAS) time based on pseudo-observations, which has the advantage of directly modeling the effect of covariates in the QAS time. Both Monte Carlo Simulations and a real data set are studied. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Objective: To identify potential prognostic factors for pulmonary thromboembolism (PTE), establishing a mathematical model to predict the risk for fatal PTE and nonfatal PTE.Method: the reports on 4,813 consecutive autopsies performed from 1979 to 1998 in a Brazilian tertiary referral medical school were reviewed for a retrospective study. From the medical records and autopsy reports of the 512 patients found with macroscopically and/or microscopically,documented PTE, data on demographics, underlying diseases, and probable PTE site of origin were gathered and studied by multiple logistic regression. Thereafter, the jackknife method, a statistical cross-validation technique that uses the original study patients to validate a clinical prediction rule, was performed.Results: the autopsy rate was 50.2%, and PTE prevalence was 10.6%. In 212 cases, PTE was the main cause of death (fatal PTE). The independent variables selected by the regression significance criteria that were more likely to be associated with fatal PTE were age (odds ratio [OR], 1.02; 95% confidence interval [CI], 1.00 to 1.03), trauma (OR, 8.5; 95% CI, 2.20 to 32.81), right-sided cardiac thrombi (OR, 1.96; 95% CI, 1.02 to 3.77), pelvic vein thrombi (OR, 3.46; 95% CI, 1.19 to 10.05); those most likely to be associated with nonfatal PTE were systemic arterial hypertension (OR, 0.51; 95% CI, 0.33 to 0.80), pneumonia (OR, 0.46; 95% CI, 0.30 to 0.71), and sepsis (OR, 0.16; 95% CI, 0.06 to 0.40). The results obtained from the application of the equation in the 512 cases studied using logistic regression analysis suggest the range in which logit p > 0.336 favors the occurrence of fatal PTE, logit p < - 1.142 favors nonfatal PTE, and logit P with intermediate values is not conclusive. The cross-validation prediction misclassification rate was 25.6%, meaning that the prediction equation correctly classified the majority of the cases (74.4%).Conclusions: Although the usefulness of this method in everyday medical practice needs to be confirmed by a prospective study, for the time being our results suggest that concerning prevention, diagnosis, and treatment of PTE, strict attention should be given to those patients presenting the variables that are significant in the logistic regression model.
Resumo:
It is often necessary to run response surface designs in blocks. In this paper the analysis of data from such experiments, using polynomial regression models, is discussed. The definition and estimation of pure error in blocked designs are considered. It is recommended that pure error is estimated by assuming additive block and treatment effects, as this is more consistent with designs without blocking. The recovery of inter-block information using REML analysis is discussed, although it is shown that it has very little impact if thc design is nearly orthogonally blocked. Finally prediction from blocked designs is considered and it is shown that prediction of many quantities of interest is much simpler than prediction of the response itself.
Resumo:
Introduction: This systematic review and meta-regression analysis aimed to calculate a combined prevalence estimate and evaluate the prevalence of different Treponema species in primary and secondary endodontic infections, including symptomatic and asymptomatic eases. Methods: The MEDLINE/PubMed, Embase, Scielo, Web of Knowledge, and Scopus data-bases were searched without starting date restriction up to and including March 2014. Only reports in English were included. The selected literature was reviewed by 2 authors and classified as suitable or not to be included in this review. Lists were compared, and, in case of disagreements, decisions were made after a discussion based on inclusion and exclusion criteria. A pooled prevalence of Treponema species in endodontic infections was estimated. Additionally, a meta-regression analysis was performed. Results: Among the 265 articles identified in the initial search, only 51 were included in the final analysis. The studies were classified into 2 different groups according to the type of endodontic infection and whether it was an exclusively primary/secondary study (n = 36) or a primary/secondary comparison (n = 15). The pooled prevalence of Treponema species was 41.5% (95% confidence interval, 35.9-47.0). In the multivariate model of meta-regression analysis, primary endodontic infections (P < .001), acute apical abscess, symptomatic apical periodontitis (P < .001), and concomitant presence of 2 or more species (P = .028) explained the heterogeneity regarding the prevalence rates of Treponema species. Conclusions: Our findings suggest that Treponema species are important pathogens involved in endodontic infections, particularly in cases of primary and acute infections.
Resumo:
Objective: To evaluate suicide rates and trends in Sao Paulo by sex, age-strata, and methods. Methods: Data was collected from State registry from 1996 to 2009. Population was estimated using the National Census. We utilized joinpoint regression analysis to explore temporal trends. We also evaluated marital status, ethnicity, birthplace and methods for suicide. Results: In the period analyzed, 6,002 suicides were accrued with a rate of 4.6 per 100,000 (7.5 in men and 2.0 in women); the male-to-female ratio was around 3.7. Trends for men presented a significant decline of 5.3% per year from 1996 to 2002, and a significant increase of 2.5% from 2002 onwards. Women did not present significant changes. For men, the elderly (> 65 years) had a significant reduction of 2.3% per year, while younger men (25-44 years) presented a significant increase of 8.6% from 2004 onwards. Women did not present significant trend changes according to age. Leading suicide methods were hanging and poisoning for men and women, respectively. Other analyses showed an increased suicide risk ratio for singles and foreigners. Conclusions: Specific epidemiological trends for suicide in the city of Sao Paulo that warrant further investigation were identified. High-risk groups - such as immigrants - could benefit from targeted strategies of suicide prevention.