960 resultados para REEF FLAT
Resumo:
Underwater spectral reflectance was measured for selected biotic and abiotic coral reef features of Heron Reef from June 25-30, 2006. Spectral reflectance's of 105 different benthic types were obtained in-situ. An Ocean Optics USB2000 spectrometer was deployed in an custom made underwater housing with a 0.5 m fiber-optic probe mounted next to an artificial light source. Spectral readings were collected with the probe(bear fibre) about 5 cm from the target to ensure that the target would fill the field of view of the fiber optic (FOV diameter ~4.4 cm), as well as to reduce the attenuating effect of the intermediate water (Roelfsema et al., 2006). Spectral readings included for one target included: 1 reading of the covered spectral fibre to correct for instrument noise, 1 reading of spectralon panel mounted on divers wrist to measure incident ambient light, and 8 readings of the target. Spectral reflectance was calculated for each target by first subtracting the instrument noise reading from each other reading. The corrected target readings were then divided by the corrected spectralon reading resulting in spectral reflectance of each target reading. An average target spectral reflectance was calculated by averaging the eight individual spectral reflectance's of the target. If an individual target spectral reflectance was visual considered an outlier, it was not included in the average spectral reflectance calculation. See Roelfsema at al. (2006) for additional info on the methodology of underwater spectra collection.
Resumo:
There are few in situ studies showing how net community calcification (Gnet) of coral reefs is related to carbonate chemistry, and the studies to date have demonstrated different predicted rates of change. In this study, we measured net community production (Pnet), Gnet, and carbonate chemistry of a reef flat at One Tree Island, Great Barrier Reef. Diurnal pCO2 variability of 289-724 µatm was driven primarily by photosynthesis and respiration. The reef flat was found to be net autotrophic, with daily production of ? 35 mmol C/m**2/d and net calcification of ? 33 mmol C/m**2/d . Gnet was strongly related to Pnet, which drove a hysteresis pattern in the relationship between Gnet and aragonite saturation state (Omega ar). Although Pnet was the main driver of Gnet, Omega ar was still an important factor, where 95% of the variance in Gnet could be described by Pnet and Omega ar. Based on the observed in situ relationship, Gnet would be expected to reach zero when Omega ar is 2.5. It is unknown what proportion of a decline in Gnet would be through reduced calcification and what would occur through increased dissolution, but the results here support predictions that overall calcium carbonate production will decline in coral reefs as a result of ocean acidification.
Resumo:
Seven coral reef communities were defined on Shiraho fringing reef, Ishigaki Island, Japan. Net photosynthesis and calcification rates were measured by in situ incubations at 10 sites that included six of the defined communities, and which occupied most of the area on the reef flat and slope. Net photosynthesis on the reef flat was positive overall, but the reef flat acts as a source for atmospheric CO2, because the measured calcification/photosynthesis ratio of 2.5 is greater than the critical ratio of 1.67. Net photosynthesis on the reef slope was negative. Almost all excess organic production from the reef flat is expected to be effused to the outer reef and consumed by the communities there. Therefore, the total net organic production of the whole reef system is probably almost zero and the whole reef system also acts as a source for atmospheric CO2. Net calcification rates of the reef slope corals were much lower than those of the branching corals. The accumulation rate of the former was approximately 0.5 m kyr?1 and of the latter was ~0.7-5 m kyr?1. Consequently, reef slope corals could not grow fast enough to keep up with or catch up to rising sea levels during the Holocene. On the other hand, the branching corals grow fast enough to keep up with this rising sea level. Therefore, a transition between early Holocene and present-day reef communities is expected. Branching coral communities would have dominated while reef growth kept pace with sea level rise, and the reef was constructed with a branching coral framework. Then, the outside of this framework was covered and built up by reef slope corals and present-day reefs were constructed.
Resumo:
The effect of decreasing aragonite saturation state (Omega Arag) of seawater (elevated pCO2) on calcification rates of Acropora muricata was studied using nubbins prepared from parent colonies located at two sites of La Saline reef (La Réunion Island, western Indian Ocean): a back-reef site (BR) affected by nutrient-enriched groundwater discharge (mainly nitrate), and a reef flat site (RF) with low terrigenous inputs. Protein and chlorophyll a content of the nubbins, as well as zooxanthellae abundance, were lower at RF than BR. Nubbins were incubated at ~27°C over 2 h under sunlight, in filtered seawater manipulated to get differing initial pCO2 (1,440-340 µatm), Omega Arag (1.4-4.0), and dissolved inorganic carbon (DIC) concentrations (2,100-1,850 µmol/kg). Increasing DIC concentrations at constant total alkalinity (AT) resulted in a decrease in Omega Arag and an increase in pCO2. AT at the beginning of the incubations was kept at a natural level of 2,193 ± 6 µmol/kg (mean ± SD). Net photosynthesis (NP) and calcification were calculated from changes in pH and AT during the incubations. Calcification decrease in response to doubling pCO2 relative to preindustrial level was 22% for RF nubbins. When normalized to surface area of the nubbins, (1) NP and calcification were higher at BR than RF, (2) NP increased in high pCO2 treatments at BR compared to low pCO2 treatments, and (3) calcification was not related to Omega Arag at BR. When normalized to NP, calcification was linearly related to Omega Arag at both sites, and the slopes of the relationships were not significantly different. The increase in NP at BR in the high pCO2 treatments may have increased calcification and thus masked the negative effect of low Omega Arag on calcification. Removing the effect of NP variations at BR showed that calcification declined in a similar manner with decreased Omega Arag (increased pCO2) whatever the nutrient loading.
Resumo:
The severity of the impact of elevated atmospheric pCO2 to coral reef ecosystems depends, in part, on how seawater pCO2 affects the balance between calcification and dissolution of carbonate sediments. Presently, there are insufficient published data that relate concentrations of pCO2 and CO3 to in situ rates of reef calcification in natural settings to accurately predict the impact of elevated atmospheric pCO2 on calcification and dissolution processes. Rates of net calcification and dissolution, CO3 concentrations, and pCO2 were measured, in situ, on patch reefs, bare sand, and coral rubble on the Molokai reef flat in Hawaii. Rates of calcification ranged from 0.03 to 2.30 mmol CaCO3 m**-2 h**-1 and dissolution ranged from -0.05 to -3.3 mmol CaCO3 m**-2 h**-1. Calcification and dissolution varied diurnally with net calcification primarily occurring during the day and net dissolution occurring at night. These data were used to calculate threshold values for pCO2 and CO3 at which rates of calcification and dissolution are equivalent. Results indicate that calcification and dissolution are linearly correlated with both CO3 and pCO2. Threshold pCO2 and CO3 values for individual substrate types showed considerable variation. The average pCO2 threshold value for all substrate types was 654±195 µatm and ranged from 467 to 1003 µatm. The average CO3 threshold value was 152±24 µmol/kg, ranging from 113 to 184 µmol/kg. Ambient seawater measurements of pCO2 and CO3 indicate that CO3 and pCO2 threshold values for all substrate types were both exceeded, simultaneously, 13% of the time at present day atmospheric pCO2 concentrations. It is predicted that atmospheric pCO2 will exceed the average pCO2 threshold value for calcification and dissolution on the Molokai reef flat by the year 2100.
Resumo:
The effect of decreasing aragonite saturation state (Omega Arag) of seawater (elevated pCO2) on calcification rates of Acropora muricata was studied using nubbins prepared from parent colonies located at two sites of La Saline reef (La Réunion Island, western Indian Ocean): a back-reef site (BR) affected by nutrient-enriched groundwater discharge (mainly nitrate), and a reef flat site (RF) with low terrigenous inputs. Protein and chlorophyll a content of the nubbins, as well as zooxanthellae abundance, were lower at RF than BR. Nubbins were incubated at ~27°C over 2 h under sunlight, in filtered seawater manipulated to get differing initial pCO2 (1,440-340 µatm), Omega Arag (1.4-4.0), and dissolved inorganic carbon (DIC) concentrations (2,100-1,850 µmol/kg). Increasing DIC concentrations at constant total alkalinity (AT) resulted in a decrease in Omega Arag and an increase in pCO2. AT at the beginning of the incubations was kept at a natural level of 2,193 ± 6 µmol/kg (mean ± SD). Net photosynthesis (NP) and calcification were calculated from changes in pH and AT during the incubations. Calcification decrease in response to doubling pCO2 relative to preindustrial level was 22% for RF nubbins. When normalized to surface area of the nubbins, (1) NP and calcification were higher at BR than RF, (2) NP increased in high pCO2 treatments at BR compared to low pCO2 treatments, and (3) calcification was not related to Omega Arag at BR. When normalized to NP, calcification was linearly related to Omega Arag at both sites, and the slopes of the relationships were not significantly different. The increase in NP at BR in the high pCO2 treatments may have increased calcification and thus masked the negative effect of low Omega Arag on calcification. Removing the effect of NP variations at BR showed that calcification declined in a similar manner with decreased Omega Arag (increased pCO2) whatever the nutrient loading.
Resumo:
This airborne hyperspectral (19 bands) image data of Heron Reef, Great Barrier Reef, Australia is derived from Compact Airborne Spectrographic Imager (CASI) data acquired on 1st and 3rd of July 2002, latitude -23.45, longitude 151.92. Processing and correction to at-surface data was completed by Karen Joyce (Joyce, 2004). Raw imagery consisted several images corresponding to the number of flight paths taken to cover the entire Heron Reef. Spatial resolution is one meter. Radiometric corrections converted the at-sensor digital number values to at surface spectral radiance values using sensor specific calibration coefficients and CSIRO's c-WomBat-c atmospheric correction software. Geometric corrections were done using field collected coordinates of features identified in the image. Projection used was Universal Transverse Mercator Zone 56 South and Datum used was WGS 84. Image data is in TIFF format.
Resumo:
Nine holes were drilled with a submersible hydraulic drill into the slopes and reef flats of the Caubyan and Calituban reefs as well as of Olango Flat. The maximum depth of core penetration was 11 m. 14C ages showed that the Caubyan and Calituban reefs were formed within the last 6,000 years. Corals settled on a pre-existing relief parallel to the island of Bohol, building a framework for other carbonate-producing organisms. The reef flat south of Olango has a different structure. Formation took place during a Pleistocene high sea level, e.g. 125,000 years ago.
Resumo:
The abundance and productivity of benthic microalgae in coral reef sediments are poorly known compared with other, more conspicuous (e.g. coral zooxanthellae, macroalgae) primary producers of coral reef habitats. A survey of the distribution, biomass, and productivity of benthic microalgae on a platform reef flat and in a cross-shelf transect in the southern Great Barrier Reef indicated that benthic microalgae are ubiquitous, abundant (up to 995.0 mg chlorophyll (chl) a m(-2)), and productive (up to 110 mg O-2 m(-2) h(-1)) components of the reef ecosystem. Concentrations of benthic microalgae, expressed as chlorophyll a per surface area, were approximately 100-fold greater than the integrated water column concentrations of microalgae throughout the region. Benthic microalgal biomass was greater on the shallow water platform reef than in the deeper waters of the cross-shelf transect. In both areas the benthic microalgal communities had a similar composition, dominated by pennate diatoms, dinoflagellates, and cyanobacteria. Benthic microalgal populations were potentially nutrient-limited, based on responses to nitrogen and phosphorus enrichments in short-term (7-day) microcosm experiments. Benthic microalgal productivity, measured by O-2 evolution, indicated productive communities responsive to light and nutrient availability. The benthic microalgal concentrations observed (92-995 mg chl a m(-2)) were high relative to other reports, particularly compared with temperate regions. This abundance of productive plants in both reef and shelf sediments in the southern Great Barrier Reef suggests that benthic microalgae are key components of coral reef ecosystems.
Resumo:
Large storm-relocated Porites coral blocks are widespread on the reef flats of Nansha area, southern South China Sea. Detailed investigations of coral reef ecology, geomorphology and sedimentation on Yongshu Reef indicate that such storm-relocated blocks originated from large Porites lutea corals growing on the spurs within the reef-front living coral zone. Because the coral reef has experienced sustained subsidence and reef development during the Holocene, dead corals were continuously covered by newly growing coral colonies. For this reason, the coral blocks must have been relocated by storms from the living sites and therefore the ages of these storm-relocated corals should approximate the times when the storms occurred. Rapid emplacement of these blocks is also evidenced by the lack of coral overgrowth, encrustation or subtidal alteration. U-series dating of the storm-relocated blocks as well as of in situ reef flat corals suggests that, during the last 1000 years, at least six strong storms occurred in 1064 +/- 30, 1210 +/- 5-1201 +/- 4, 1336 +/- 9, 1443 +/- 9, 1685 +/- 8-1680 +/- 6, 1872 +/- 15 AD, respectively, with an average 160-year cycle (110-240 years). The last storm, which occurred in 1872 15 AD, also led to mortality of the reef flat corals dated at similar to 130 years ago. Thus, the storm had significant impacts on coral reef ecology and morphology. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In the granitic Seychelles, many shores and beaches are fringed by coral reef flats which provide protection to shores from erosion by waves. The surfaces of these reef flats support a complex ecology. About 10 years ago their seaward zones were extensively covered by a rich coral growth, which reached approximately to mean low water level, but in 1998 this was largely killed by seawater warming. The resulting large expanses of dead coral skeletons in these locations are now disintegrating, and much of the subsequent modest recovery by new coral recruitment was set back by further mortalities. A mathematical model of wave energy reaching shorelines protected by coral reef flats has been applied to 14 Seychelles reefs. It is derived from equations which predict: (1) the raised water level, or wave set-up, on reef flats resulting from wave breaking, which depends upon offshore wave height and period, depth of still water over the reef flat and the reef crest profile, and (2) the decay of energy from reef edge to shoreline that is affected by width of reef flat, surface roughness, sea level rise and 'pseudo-sea level rise' created by increased depth resulting from disintegration of coral colonies. The model treats each reef as one entity, but because biota and zonation on reef flats are not homogenous, all reefs are divided into four zones. In each, cover by both living and dead biota was estimated for calculation of parameters, and then averaged to obtain input data for the model. All possible biological factors were taken into account, such as the ability of seagrass beds to grow upwards to match expected sea level rise, reduction in height of the reef flat in relation to sea level as zones of dead corals decay, and the observed 'rounding' of reef crests as erosion removes corals from those areas. Estimates were also made of all these factors for a time approximately a decade ago, representing a time before the mass coral mortality, and for approximately a decade in the future when the observed rapid state of dead coral colony disintegration is assumed to have reached an end point. Results of increased energy over the past decade explain observations of erosion in some sites in the Seychelles. Most importantly, it is estimated that the rise in energy reaching shores protected by fringing reefs will now accelerate more rapidly, such that the increase expected over the next decade will be approximately double than that seen over the past decade. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Accurate dating of lagoon sediments has been a difficult problem, although lagoon profiles, usually with high deposition rates, have a great potential for high-resolution climate reconstruction. We report 26 high-precision TIMS U-series dates (on 25 coral branches) and five AMS C-14 dates (on foraminifera) for a 15.4-m long lagoon core from Yongshu Reef, Nansha area, southern South China Sea. All the dates are in the correct stratigraphical sequence, providing the best chronology so far reported for lagoon deposits. The results reveal a similar to 4000-a continuous depositional history, with sedimentation rates varying from 0.8 to 24.6 mm a(-1), with an average of 3.85 mm a(-1), which corresponds to an average net carbonate accumulation rate of similar to 2700 g CaCO3 m(-2) a(-1), significantly higher than the mean value (800 +/- 400 g CaCO3 m(-2) a(-1)) used for lagoons in general in previous studies of global carbonate budget. Episodes of accelerated depositions within the last 1000 years correlate well with strong storm events identified by U-series dates of storm-transported coral blocks in the area. However, in the longer term, the sedimentation rates during the past 1000 years were much higher than earlier on, probably due to more vigorous wave-reef interaction as a result of relative sea-level fall since 500 AD and expansion of reef flat area, supplying more sediments. The coral TIMS U-series ages and foraminifera AMS 14C dates reveal intriguing apparent radiocarbon reservoir ages (R) from 572 to 1052 years, which are much higher than global mean values of similar to 400 years. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Underwater photo-transect surveys were conducted on September 23-27, 2007 at different sections of the reef flat, reef crest and reef slope in Heron Reef. This survey was done by swimming along pre-defined transect sites and taking a picture of the bottom substrate parallel to the bottom at constant vertical distance (30cm) every two to three metres. A total of 3,586 benthic photos were taken. A floating GPS setup connected to the swimmer/diver by a line enabled recording of coordinates of transect surveys. Approximation of the coordinates for each benthic photo was based on the photo timestamp and GPS coordinate time stamp, using GPS Photo Link Software. Coordinates of each photo were interpolated by finding the the gps coordinates that were logged at a set time before and after the photo was captured. The output of this process was an ArcMap point shapefile, a Google Earth KML file and a thumbnail of each benthic photo taken. The data in the ArcMap shapefile and in the Google Earth KML file consisted of the approximated coordinate of each benthic photo taken during the survey. Using the GPS Photo Link extension within the ArcMap environment, opening the ArcMap shapefile will enable thumbnail to be displayed on the associated benthic cover photo whenever hovering with the mouse over a point on the transect. By downloading the GPSPhotoLink software from the www.geospatialexperts.com, and installing it as a trial version the ArcMap exstension will be installed in the ArcMap environment.