422 resultados para RECIRCULATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contract No. 210-78-0011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Task 9R99-01-005-04. Contract DA 44-177-TC-710."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Task 9R99-005-04. Contract DA 44-177-TC-710."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les percidés, dont le doré jaune (Sander vitreus), représentent une opportunité considérable de diversification de l’offre pour l’industrie aquacole au Canada, mais aussi ailleurs dans le monde. Malgré son fort potentiel, les producteurs de dorés sont marginaux, car l’élevage larvaire s’avère difficile et complexe, résultant en des succès de survie variables. Pour un développement durable de l’aquaculture, mais aussi pour assurer un meilleur contrôle des paramètres environnementaux, et conséquemment une meilleure rentabilité, les nouvelles méthodes d’élevage s’orientent vers l’utilisation de systèmes en recirculation où l’eau est majoritairement filtrée et recyclée. Un premier volet de nos travaux réalisés en 2014 a confirmé que (i) les méthodes intensives d’élevage larvaire peuvent être adaptés dans les systèmes en recirculation, que (ii) la moulée commerciale enrichie de farine de krills offre une meilleure croissance qu’une moulée commerciale enrichie aux microalgues, (iii) que des artémies vivantes ne favorise pas l’ingestion alimentaire lorsqu’ils sont ajoutés à des rations d’une moulée commerciale enrichie de farine de krills et (iv) que le développement de la vessie natatoire est le défi principal afin de produire du doré en circuit recyclé de façon rentable. Une étude menée en 2015 visait à favoriser le développement de la vessie natatoire du doré dans les systèmes en recirculation. Quatre traitements ont été comparés soit, un jet d’eau de surface faible, un jet d’eau de surface fort, un microbulleur et un rondin commercial d’absorption d’huile. Nous avons démontré que (i) l’utilisation d’un jet d’eau de surface faible n’était pas suffisant pour favoriser le développement de la vessie natatoire du doré dans les systèmes où l’eau est fortement recirculée et (ii) qu’un rondin d’absorption d’huile est le dispositif le plus efficace pour favoriser le développement de la vessie natatoire du doré. Les prochains travaux devraient se pencher sur (i) l’élaboration de bassins adaptés aux réalités de l’élevage intensif des percidés, (ii) sur des efforts de domestication du doré par sélection génétique afin d’augmenter la survie dans les systèmes en recirculation et sur (iii) des études bioéconomiques afin de réduire les risques associés aux démarrages de nouvelles piscicultures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Response surface methodology based on Box-Behnken (BBD) design was successfully applied to the optimization in the operating conditions of the electrochemical oxidation of sanitary landfill leachate aimed for making this method feasible for scale up. Landfill leachate was treated in continuous batch-recirculation system, where a dimensional stable anode (DSA(©)) coated with Ti/TiO2 and RuO2 film oxide were used. The effects of three variables, current density (milliampere per square centimeter), time of treatment (minutes), and supporting electrolyte dosage (moles per liter) upon the total organic carbon removal were evaluated. Optimized conditions were obtained for the highest desirability at 244.11 mA/cm(2), 41.78 min, and 0.07 mol/L of NaCl and 242.84 mA/cm(2), 37.07 min, and 0.07 mol/L of Na2SO4. Under the optimal conditions, 54.99 % of chemical oxygen demand (COD) and 71.07 ammonia nitrogen (NH3-N) removal was achieved with NaCl and 45.50 of COD and 62.13 NH3-N with Na2SO4. A new kinetic model predicted obtained from the relation between BBD and the kinetic model was suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of vegetal impurities in sugarcane delivered to sugarmills as green and dry leaves is a problem not only because they are non-value materials to be processed along with sugarcane stalks, but also because they can rise the color of the clarified juice and, consequently, the color of the sugar produced, with a reduction of its quality for the market. Another problem is the mud volume sedimented in the clarifiers, which also can result in a larger recirculation and greater volume of filtrate juice, with higher losses of sucrose and utilization of the vacuum rotary filters. The objective of this work was to observe the effect of the presence of green and dry leaves on sugarcane juice clarification, related to a control treatment with the addition of fiber extracted from the stalks. The experiments were planned based on the addition of quantities of fibrous sources in order to formulate samples with absolute increase of 0.25 , 0.50 and 0.75 percentual points over the fiber content of the sugarcane stalks (control treatment). The juice clarification was conducted with a laboratory clarifier. The clarified juice color and the mud volume were evaluated. The presence of green leaves caused higher color and mud volume due to the extraction of non-sucrose components of the leaves. Soluble compounds of dry leaves were also extracted, though not detected by juice analysis. The addition of the fiber extracted from the stalks did not induce alterations in the clarification process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents some improvements in the model proposed by Machado et al. [Machado SL, Carvalho MF, Vilar OM. Constitutive model for municipal solid waste. J Geotech Geoenviron Eng ASCE 2002; 128(11):940-51] now considering the influence of biodegradation of organic matter in the mechanical behavior of municipal solid waste. The original framework considers waste as composed of two component groups; fibers and organic paste. The particular laws of behavior are assessed for each component group and then coupled to represent waste behavior. The improvements introduced in this paper take into account the changes in the properties of fibers and mass loss due to organic matter depletion over time. Mass loss is indirectly calculated considering the MSW gas generation potential through a first order decay model. It is shown that as the biodegradation process occurs the proportion of fibers increases, however, they also undergo a degradation process which tends to reduce their ultimate tensile stress and Young modulus. The way these changes influence the behavior of MSW is incorporated in the final framework which captures the main features of the MSW stress-strain behavior under different loading conditions. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study was performed regarding the effect of the relation between fill time, volume treated per cycle, and influent concentration at different applied organic loadings on the stability and efficiency of an anaerobic sequencing batch reactor containing immobilized biomass on polyurethane foam with recirculation of the liquid phase (AnSBBR) applied to the treatment of wastewater from a personal care industry. Total cycle length of the reactor was 8 h (480 min). Fill times were 10 min in the batch operation, 4 h in the fed-batch operation, and a 10-min batch followed by a 4-h fed batch in the mixed operation. Settling time was not necessary since the biomass was immobilized and decant time was 10 min. Volume of liquid medium in the reactor was 2.5 L, whereas volume treated per cycle ranged from 0.88 to 2.5 L in accordance with fill time. Influent concentration varied from 300 to 1,425 mg COD/L, resulting in an applied volumetric organic load of 0.9 and 1.5 g COD/L.d. Recirculation flow rate was 20 L/h, and the reactor was maintained at 30 A degrees C. Values of organic matter removal efficiency of filtered effluent samples were below 71% in the batch operations and above 74% in the operations of fed batch followed by batch. Feeding wastewater during part of the operational cycle was beneficial to the system, as it resulted in indirect control over the conversion of substrate into intermediates that would negatively interfere with the biochemical reactions regarding the degradation of organic matter. As a result, the average substrate consumption increased, leading to higher organic removal efficiencies in the fed-batch operations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this research was to study the behavior of two anaerobic sequencing batch reactors, containing immobilized biomass (AnSBBR), as a function of the ratio of the volume of treated medium in each cycle to the total volume of reaction medium. The reactors, in which mixing was accomplished by recirculation of the liquid phase, were maintained at 30 +/- 1 degrees C and treated different wastewaters in 8-h cycles. The operational conditions imposed had the objective to investigate whether maintenance of a residual volume in the reactor would affect, at the end of each cycle, process efficiency and stability, as well as to verify the intensity of the effect for different types of wastewaters and organic loading rates. The first reactor, with work volume of 2.5 L, treated reconstituted cheese whey at an organic loading rate of 12 g COD.L(-1).d(-1) and presented similar effluent quality for the four conditions under which it was operated: renewal of 100, 70, 50 and 25 % of its work volume at each cycle. Despite the fact that reduction in the renewed volume did not significantly affect effluent quality, in quantitative terms, this reduction resulted in an increase in the amount of organic matter removed by the first reactor. The second reactor, with work volume of 1.8 L, treated synthetic wastewater at organic loading rates of 3 and 5 g COD.L(-1).d(-1) and operated under two conditions for each loading: renewal of 100 and 50 % of its work volume. At the organic loading rate of 3 g COD.L(-1).d(-1), the results showed that both effluent quality and amount of organic matter removed by the second reactor were independent of the treated volume per cycle. At the organic loading rate of 5 g COD.L(-1).d(-1), although the reduction in the renewed volume did not affect the amount of organic matter removed by the reactor, effluent quality improved during reactor operation with total discharge of its volume. In general, results showed process stability under all conditions, evidencing reactor flexibility and the potential to apply this technology in the treatment of different types of wastewater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to investigate the effect of different feeding times (2, 4, and 6 h) and organic loading rates (3, 6 and 12 gCOD l(-1) day(-1)) on the performance of an anaerobic sequencing batch reactor containing immobilized biomass, as well as to verify the minimum amount of alkalinity that can be added to the influent. The reactor, in which mixing was achieved by recirculation of the liquid phase, was maintained at 30 +/- 1A degrees C, possessed 2.5 l reactional volume and treated 1.5 l cheese whey in 8-h cycles. Results showed that the effect of feeding time on reactor performance was more pronounced at higher values of organic loading rates (OLR). During operation at an OLR of 3 gCOD l(-1) day(-1), change in feeding time did not affect efficiency of organic matter removal from the reactor. At an OLR of 6 gCOD l(-1) day(-1), reactor efficiency improved in relation to the lower loading rate and tended to drop at longer feeding times. At an OLR of 12 gCOD l(-1) day(-1) the reactor showed to depend more on feeding time; higher feeding times resulted in a decrease in reactor efficiency. Under all conditions shock loads of 24 gCOD l(-1) day(-1) caused an increase in acids concentration in the effluent. However, despite this increase, the reactor regained stability readily and alkalinity supplied to the influent showed to be sufficient to maintain pH close to neutral during operation. Regardless of applied OLR, operation with feeding time of 2 h was which provided improved stability and rendered the process less susceptible to shock loads.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of flow type and rotor speed was investigated in a round-bottom reactor with 5 L useful volume containing 2.0 L of granular biomass. The reactor treated 2.0 L of synthetic wastewater with a concentration of 800 mgCOD/L in 8-h cycles at 30 degrees C. Five impellers, commonly used in biological processes, have been employed to this end, namely: a turbine and a paddle impeller with six-vertical-flat-blades, a turbine and a paddle impeller with six-45 degrees-inclined-flat-blades and a three-blade-helix impeller. Results showed that altering impeller type and rotor speed did not significantly affect system stability and performance. Average organic matter removal efficiency was about 84% for filtered samples, total volatile acids concentration was below 20 mgHAc/L and bicarbonate alkalinity a little less than 400 mgCaCO(3)/L for most of the investigated conditions. However, analysis of the first-order kinetic model constants showed that alteration in rotor speed resulted in an increase in the values of the kinetic constants (for instance, from 0.57 h(-1) at 50 rpm to 0.84 h(-1) at 75 rpm when the paddle impeller with six-45 degrees-inclined-flat-blades was used) and that axial flow in mechanically stirred reactors is preferable over radial-flow when the vertical-flat-blade impeller is compared to the inclined-flat-blade impeller (for instance at 75 rpm, from 0.52 h(-1) with the six-flat-blade-paddle impeller to 0.84 h(-1) with the six-45 degrees-inclined-flat-blade-paddle impeller), demonstrating that there is a rotor speed and an impeller type that maximize solid-liquid mass transfer in the reaction medium. Furthermore, power consumption studies in this reduced reactor volume showed that no high power transfer is required to improve mass transfer (less than 0.6 kW/10(3) m(3)). (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of this research was to evaluate the potential use of a bench-scale anaerobic sequencing batch biofilm reactor (ASBBR) containing mineral coal as inert support for removal Of Sulfide and organic matter effluents from an ASBBR (1.2 m(3)) utilized for treatment of sulfate-rich wastewater. The cycle time was 48 h, including the steps of feeding (2 h), reaction with continuous liquid recirculation (44 h) and discharge (2 h). COD removal efficiency was up to 90% and the effluents total sulfide concentrations (H(2)S, HS(-), S(2-)) remained in the range of 1.5 to 7.5 mg.l(-1) during the 50 days of operation (25 cycles). The un-ionized Sulfide and ionized sulfides were converted by biological process to elemental sulfur (S(0)) under oxygen limited conditions. The results obtained in the bench-scale reactor were used to design an ASBBR in pilot scale for use in post-treatment to achieve the emission standards (sulfide and COD) for sulfate reduction. The pilot-scale reactor, with a total volume of 0.43 m(3), the COD and total sulfide removal achieved 88% and 57%, respectively, for a cycle time of 48 h (70 days of operation or 35 cycles).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work was to analyze the interaction effects between temperature, feed strategy and COD/[SO(4)(2-)] levels, maintaining the same ratio, on sulfate and organic matter removal efficiency from a synthetic wastewater. This work is thus a continuation of Archilha et al. (2010) who studied the effect of feed strategy at 30 degrees C using different COD/[SO] ratios and levels. A 3.7-L anaerobic sequencing batch reactor with recirculation of the liquid phase and which contained immobilized biomass on polyurethane foam (AnSBBR) was used to treat 2.0 L synthetic wastewater in 8 h cycles. The temperatures of 15, 22.5 and 30 degrees C with two feed strategies were assessed: (a) batch and (b) batch followed by fed-batch. In strategy (a) the reactor was fed in 10 min with 2 L wastewater containing sulfate and carbon sources. In strategy (b) 1.2 L wastewater (containing only the sulfate source) was fed during the first 10 min of the cycle and the remaining 0.8 L (containing only the carbon source) in 240 min. Based on COD/[SO(4)(2-)] = 1 and on the organic matter (0.5 and 1.5 gCOD/L) and sulfate (0.5 and 1.5 gSO(4)(2-)/L) concentrations, the sulfate and organic matter loading rates applied were 1.5 and 4.5 g/L.d, i.e., same COD/[SO(4)(2-)] ratio (=1) but different levels (1.5/1.5 and 4.5/4.5 gCOD/gSO(4)(2-)). When reactor feed was 1.5 gCOD/L.d and 1.5 gSO(4)(2-)/L.d, gradual feeding (strategy b) showed to favor sulfate and organic matter removal in the investigated temperature range, indicating improved utilization of the electron donor for sulfate reduction. Sulfate removal efficiencies were 87.9; 86.3 and 84.4%, and organic matter removal efficiencies 95.2; 86.5 and 80.8% at operation temperatures of 30; 22.5 and 15 degrees C, respectively. On the other hand, when feeding was 4.5 gCOD/L.d and 4.5 gSO(4)(2-)/L.d, gradual feeding did not favor sulfate removal, indicating that gradual feeding of the electron donor did not improve sulfate reduction. (C) 2011 Elsevier Ltd. All rights reserved.