990 resultados para RECEPTOR MODELING


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Understanding the molecular basis of the binding modes of natural and synthetic ligands to nuclear receptors is fundamental to our comprehension of the activation mechanism of this important class of hormone regulated transcription factors and to the development of new ligands. Thyroid hormone receptors (TR) are particularly important targets for pharmaceuticals development because TRs are associated with the regulation of metabolic rates, body weight, and circulating levels of cholesterol and triglycerides in humans. While several high-affinity ligands are known, structural information is only partially available. In this work we obtain structural models of several TR-ligand complexes with unknown structure by docking high affinity ligands to the receptors` ligand binding domain with subsequent relaxation by molecular dynamics simulations. The binding modes of these ligands are discussed providing novel insights into the development of TR ligands. The experimental binding free energies are reasonably well-reproduced from the proposed models using a simple linear interaction energy free-energy calculation scheme.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to investigate risk for neuroticism due to the joint action of low maternal care and compromised mesocorticolimbic ‘reward’ system function linked to a variable number tandem repeat (VNTR) in the dopamine 4 receptor gene (DRD4). Data were drawn from the Victorian Adolescent Health Cohort Study, a longitudinal study of the health and well-being of 2,000 young Australians followed from adolescence to young adulthood across 8 waves from 14- to 28-years. Genetic risk was defined by carriage of at least one copy of the 7-repeat allele or derivative alleles 5, 6, and 8 (labeled 7R+). Neuroticism was assessed in adolescence and young adulthood. We observed an approximately fourfold increase in the odds of reporting neurotic symptoms in carriers of the 7R+ disposition who reported low maternal care compared with non-carriers who reported high maternal care. The percentage of risk attributable to mechanisms in which both factors played a role was 35%. Findings are discussed in terms of implications for prevention.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

W5.43(194), a conserved tryptophan residue among G-protein coupled receptors (GPCRs) and cannabinoid receptors (CB), was examined in the present report for its significance in CB2 receptor ligand binding and adenylyl cyclase (AC) activity. Computer modeling postulates that this site in CB2 may be involved in the affinity of WIN55212-2 and SR144528 through aromatic contacts. In the present study, we reported that a CB2 receptor mutant, W5.43(194)Y, which had a tyrosine (Y) substitution for tryptophan (W), retained the binding affinity for CB agonist CP55940, but reduced binding affinity for CB2 agonist WIN55212-2 and inverse agonist SR144528 by 8-fold and 5-fold, respectively; the CB2 W5.43(194)F and W5.43(194)A mutations significantly affect the binding activities of CP55940, WIN55212-2 and SR144528. Furthermore, we found that agonist-mediated inhibition of the forskolin-induced cAMP production was dramatically diminished in the CB2 mutant W5.43(194)Y, whereas W5.43(194)F and W5.43(194)A mutants resulted in complete elimination of downstream signaling, suggesting that W5.43(194) was essential for the full activation of CB2. These results indicate that both aromatic interaction and hydrogen bonding are involved in ligand binding for the residue W5.43(194), and the mutations of this tryptophan site may affect the conformation of the ligand binding pocket and therefore control the active conformation of the wild type CB2 receptor. W5.43(194)Y/F/A mutations also displayed noticeable enhancement of the constitutive activation probably attributed to the receptor conformational changes resulted from the mutations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ligand binding domain of the human vitamin D receptor (VDR) was modeled based on the crystal structure of the retinoic acid receptor. The ligand binding pocket of our VDR model is spacious at the helix 11 site and confined at the β-turn site. The ligand 1α,25-dihydroxyvitamin D3 was assumed to be anchored in the ligand binding pocket with its side chain heading to helix 11 (site 2) and the A-ring toward the β-turn (site 1). Three residues forming hydrogen bonds with the functionally important 1α- and 25-hydroxyl groups of 1α,25-dihydroxyvitamin D3 were identified and confirmed by mutational analysis: the 1α-hydroxyl group is forming pincer-type hydrogen bonds with S237 and R274 and the 25-hydroxyl group is interacting with H397. Docking potential for various ligands to the VDR model was examined, and the results are in good agreement with our previous three-dimensional structure-function theory.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To identify determinants that form nonapeptide hormone binding domains of the white sucker Catostomus commersoni [Arg8]vasotocin receptor, chimeric constructs encoding parts of the vasotocin receptor and parts of the isotocin receptor have been analyzed by [(3,5-3H)Tyr2, Arg8]vasotocin binding to membranes of human embryonic kidney cells previously transfected with the different cDNA constructs and by functional expression studies in Xenopus laevis oocytes injected with mutant cRNAs. The results indicate that the N terminus and a region spanning the second extracellular loop and its flanking transmembrane segments, which contains a number of amino acid residues that are conserved throughout the nonapeptide receptor family, contribute to the affinity of the receptor for its ligand. Nonapeptide selectivity, however, is mainly defined by transmembrane region VI and the third extracellular loop. These results are complemented by a molecular model of the vasotocin receptor obtained by aligning its sequence with those of other G-protein coupled receptors as well as that of bacteriorhodopsin. The model indicates that amino acid residues of transmembrane regions II-VII that are located close to the extracellular surface also contribute to the binding of vasotocin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A set of 38 epitopes and 183 non-epitopes, which bind to alleles of the HLA-A3 supertype, was subjected to a combination of comparative molecular similarity indices analysis (CoMSIA) and soft independent modeling of class analogy (SIMCA). During the process of T cell recognition, T cell receptors (TCR) interact with the central section of the bound nonamer peptide; thus only positions 4−8 were considered in the study. The derived model distinguished 82% of the epitopes and 73% of the non-epitopes after cross-validation in five groups. The overall preference from the model is for polar amino acids with high electron density and the ability to form hydrogen bonds. These so-called “aggressive” amino acids are flanked by small-sized residues, which enable such residues to protrude from the binding cleft and take an active role in TCR-mediated T cell recognition. Combinations of “aggressive” and “passive” amino acids in the middle part of epitopes constitute a putative TCR binding motif

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent evidence indicates that the estrogen receptor-a-negative, androgen receptor (AR)- positive molecular apocrine subtype of breast cancer is driven by AR signaling. The MDA-MB-453 cell line is the prototypical model of this breast cancer subtype; its proliferation is stimulated by androgens such as 5a-dihydrotestosterone (DHT) but inhibited by the progestin medroxyprogesterone acetate (MPA) via AR-mediated mechanisms. We report here that the AR gene in MDAMB- 453 cells contains a G-T transversion in exon 7, resulting in a receptor variant with a glutamine to histidine substitution at amino acid 865 (Q865H) in the ligand binding domain. Compared with wild-type AR, the Q865H variant exhibited reduced sensitivity to DHT and MPA in transactivation assays in MDA-MB-453 and PC-3 cells but did not respond to non-androgenic ligands or receptor antagonists. Ligand binding, molecular modeling, mammalian two-hybrid and immunoblot assays revealed effects of the Q865H mutation on ligand dissociation, AR intramolecular interactions, and receptor stability. Microarray expression profiling demonstrated that DHT and MPA regulate distinct transcriptional programs in MDA-MB-453 cells. Gene Set Enrichment Analysis revealed that DHT- but not MPA-regulated genes were associated with estrogen-responsive transcriptomes from MCF-7 cells and the Wnt signaling pathway. These findings suggest that the divergent proliferative responses of MDA-MB-453 cells to DHT and MPA result from the different genetic programs elicited by these two ligands through the AR-Q865H variant. This work highlights the necessity to characterize additional models of molecular apocrine breast cancer to determine the precise role of AR signaling in this breast cancer subtype. Endocrine-Related Cancer (2012) 19 599–613

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Medroxyprogesterone acetate (MPA) has widely been used in hormone replacement therapy (HRT), and is associated with an increased risk of breast cancer, possibly due to disruption of androgen receptor (AR) signaling. In contrast, the synthetic HRT Tibolone does not increase breast density, and is rapidly metabolized to estrogenic 3α-OH-tibolone and 3β-OH-tibolone, and a delta-4 isomer (Δ4-TIB) that has both androgenic and progestagenic properties. Here, we show that 5α-dihydrotestosterone (DHT) and Δ4-TIB, but not MPA, stabilize AR protein levels, initiate specific AR intramolecular interactions critical for AR transcriptional regulation, and increase proliferation of AR positive MDA-MB-453 breast cancer cells. Structural modeling and molecular dynamic simulation indicate that Δ4-TIB induces a more stable AR structure than does DHT, and MPA a less stable one. Microarray expression analyses confirms that the molecular actions of Δ4-TIB more closely resembles DHT in breast cancer cells than either ligand does to MPA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant disorder of skeletal malformations and progressive extraskeletal ossification. We mapped FOP to chromosome 2q23-24 by linkage analysis and identified an identical heterozygous mutation (617G→A; R206H) in the glycine-serine (GS) activation domain of ACVR1, a BMP type I receptor, in all affected individuals examined. Protein modeling predicts destabilization of the GS domain, consistent with constitutive activation of ACVR1 as the underlying cause of the ectopic chondrogenesis, osteogenesis and joint fusions seen in FOP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin receptor (IR) signaling is critical to controlling nutrient uptake and metabolism. However, only a low-resolution (3.8 Å) structure currently exists for the IR ectodomain, with some segments ill-defined or unmodeled due to disorder. Here, we revise this structure using new diffraction data to 3.3 Å resolution that allow improved modeling of the N-linked glycans, the first and third fibronectin type III domains, and the insert domain. A novel haptic interactive molecular dynamics strategy was used to aid fitting to low-resolution electron density maps. The resulting model provides a foundation for investigation of structural transitions in IR upon ligand binding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CXCL-8 (Interleukin 8) is a CXC chemokine with a central role in the human immune response. We have undertaken extensive in silico analyses to elucidate the interactions of CXCL-8 with its various binding partners, which are crucial for its biological function. Sequence and structure analyses showed that residues in the thirdq β-sheet and basic residues in the heparin binding site are highly variable, while residues in the second β-sheet are highly conserved. Molecular dynamics simulations in aqueous solution of dimeric CXCL-8 have been performed with starting geometries from both X-ray and NMR structures showed shearing movements between the two antiparallel C-terminal helices. Dynamic conservation analyses of these simulations agreed with experimental data indicating that structural differences between the two structures at quaternary level arise from changes in the secondary structure of the N-terminal loop, the 310-helix, the 30s, 40s, and 50s loops and the third β-sheet, resulting in a different interhelical separation. Nevertheless, the observation of these different states indicates that CXCL-8 has the potential to undergo conformational changes, and it seems likely that this feature is relevant to the mode of binding of glycosaminoglycan (GAG) mimetics such as cyclitols. Simulations of the receptor peptide fragment−CXCL-8 complex identified several specific interactions of the receptor peptide with CXCL-8 that could be exploited in the structure-based design of competitive peptides and nonpeptidic molecules targeting CXCL-8 for combating inflammatory diseases. Simulations of the CXCL-8 dimer complexed with a 24-mer heparin fragment and of the CXCL-8−receptor peptide complex revealed that Arg60, Lys64, and Arg68 in the dimer bind to cyclitols in a horseshoe pattern, defining a region which is spatially distinct from the receptor binding site. There appears to be an optimum number of sulfates and an optimum length of alkyl spacers required for the interaction of cyclitol inhibitors with the dimeric form of CXCL-8. Calculation of the binding affinities of cyclitol inhibitors reflected satisfactorily the ranking of experimentally determined inhibitory potencies. The findings of these molecular modeling studies will help in the search for inhibitors which can modulate various CXCL-8 biological activities and serve as an excellent model system to study CXC-inhibitor interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

英文摘要: Rosetting, or forming a cell aggregate between a single target nucleated cell and a number of red blood cells (RBCs), is a simple assay for cell adhesion-mediated by specific receptor-ligand interaction. For example, rosette formation between sheep RBC and human lymphocytes has been used to differentiate T cells from B cells. Rosetting assay is commonly used to determine the interaction of Fc gamma-receptors (Fc gamma R) expressed on inflammatory cells and IgG-coated on RBCs. Despite its wide use in measuring cell adhesion, the biophysical parameters of rosette formation have not been well characterized. Here we developed a probabilistic model to describe the distribution of rosette sizes, which is Poissonian. The average rosette size is predicted to be proportional to the apparent two-dimensional binding affinity of the interacting receptor-ligand pair and their site densities. The model has been supported by experiments of rosettes mediated by four molecular interactions: Fc gamma RIII interacting with IgG, T cell receptor and coreceptor CD8 interacting with antigen peptide presented by major histocompatibility molecule, P-selectin interacting with P-selectin glycoprotein ligand 1 (PSGL-1), and L-selectin interacting with PSGL-1. The latter two are structurally similar and are different from the former two. Fitting the model to data enabled us to evaluate the apparent effective two-dimensional binding affinity of the interacting molecular pairs: 7.19x10(-5) mu m(4) for Fc gamma RIII-IgG interaction, 4.66x10(-3) mu m(4) for P-selectin-PSGL-1 interaction, and 0.94x10(-3) mu m(4) for L-selectin-PSGL-1 interaction. These results elucidate the biophysical mechanism of rosette formation and enable it to become a semiquantitative assay that relates the rosette size to the effective affinity for receptor-ligand binding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell adhesion, which is mediated by the receptor-ligand bonds, plays an essential role in various biological processes. Previous studies often described the force-extension relationship of receptor-ligand bond with linear assumption. However, the force-extension relationship of the bond is intrinsically nonlinear, which should have significant influence on the mechanical behavior of cell adhesion. In this work, a nonlinear mechanical model for cell adhesion is developed, and the adhesive strength was studied at various bond distributions. We find that the nonlinear mechanical behavior of the receptor-ligand bonds is crucial to the adhesive strength and stability. This nonlinear behavior allows more bonds to achieve large bond force simultaneously, and therefore the adhesive strength becomes less sensitive to the change of bond density at the outmost periphery of the adhesive area. In this way, the strength and stability of cell adhesion are soundly enhanced. The nonlinear model describes the cell detachment behavior better than the linear model. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Notch signaling pathway enables neighboring cells to coordinate developmental fates in diverse processes such as angiogenesis, neuronal differentiation, and immune system development. Although key components and interactions in the Notch pathway are known, it remains unclear how they work together to determine a cell's signaling state, defined as its quantitative ability to send and receive signals using particular Notch receptors and ligands. Recent work suggests that several aspects of the system can lead to complex signaling behaviors: First, receptors and ligands interact in two distinct ways, inhibiting each other in the same cell (in cis) while productively interacting between cells (in trans) to signal. The ability of a cell to send or receive signals depends strongly on both types of interactions. Second, mammals have multiple types of receptors and ligands, which interact with different strengths, and are frequently co-expressed in natural systems. Third, the three mammalian Fringe proteins can modify receptor-ligand interaction strengths in distinct and ligand-specific ways. Consequently, cells can exhibit non-intuitive signaling states even with relatively few components.

In order to understand what signaling states occur in natural processes, and what types of signaling behaviors they enable, this thesis puts forward a quantitative and predictive model of how the Notch signaling state is determined by the expression levels of receptors, ligands, and Fringe proteins. To specify the parameters of the model, we constructed a set of cell lines that allow control of ligand and Fringe expression level, and readout of the resulting Notch activity. We subjected these cell lines to an assay to quantitatively assess the levels of Notch ligands and receptors on the surface of individual cells. We further analyzed the dependence of these interactions on the level and type of Fringe expression. We developed a mathematical modeling framework that uses these data to predict the signaling states of individual cells from component expression levels. These methods allow us to reconstitute and analyze a diverse set of Notch signaling configurations from the bottom up, and provide a comprehensive view of the signaling repertoire of this major signaling pathway.