889 resultados para Question answering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a complete system for the treatment of both geographical and temporal dimensions in text and its application to information retrieval. This system has been evaluated in both the GeoTime task of the 8th and 9th NTCIR workshop in the years 2010 and 2011 respectively, making it possible to compare the system to contemporary approaches to the topic. In order to participate in this task we have added the temporal dimension to our GIR system. The system proposed here has a modular architecture in order to add or modify features. In the development of this system, we have followed a QA-based approach as well as multi-search engines to improve the system performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently there are an overwhelming number of scientific publications in Life Sciences, especially in Genetics and Biotechnology. This huge amount of information is structured in corporate Data Warehouses (DW) or in Biological Databases (e.g. UniProt, RCSB Protein Data Bank, CEREALAB or GenBank), whose main drawback is its cost of updating that makes it obsolete easily. However, these Databases are the main tool for enterprises when they want to update their internal information, for example when a plant breeder enterprise needs to enrich its genetic information (internal structured Database) with recently discovered genes related to specific phenotypic traits (external unstructured data) in order to choose the desired parentals for breeding programs. In this paper, we propose to complement the internal information with external data from the Web using Question Answering (QA) techniques. We go a step further by providing a complete framework for integrating unstructured and structured information by combining traditional Databases and DW architectures with QA systems. The great advantage of our framework is that decision makers can compare instantaneously internal data with external data from competitors, thereby allowing taking quick strategic decisions based on richer data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (M.S.)--Illinois.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the recent rapid growth of the Semantic Web (SW), the processes of searching and querying content that is both massive in scale and heterogeneous have become increasingly challenging. User-friendly interfaces, which can support end users in querying and exploring this novel and diverse, structured information space, are needed to make the vision of the SW a reality. We present a survey on ontology-based Question Answering (QA), which has emerged in recent years to exploit the opportunities offered by structured semantic information on the Web. First, we provide a comprehensive perspective by analyzing the general background and history of the QA research field, from influential works from the artificial intelligence and database communities developed in the 70s and later decades, through open domain QA stimulated by the QA track in TREC since 1999, to the latest commercial semantic QA solutions, before tacking the current state of the art in open user-friendly interfaces for the SW. Second, we examine the potential of this technology to go beyond the current state of the art to support end-users in reusing and querying the SW content. We conclude our review with an outlook for this novel research area, focusing in particular on the R&D directions that need to be pursued to realize the goal of efficient and competent retrieval and integration of answers from large scale, heterogeneous, and continuously evolving semantic sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linked Data semantic sources, in particular DBpedia, can be used to answer many user queries. PowerAqua is an open multi-ontology Question Answering (QA) system for the Semantic Web (SW). However, the emergence of Linked Data, characterized by its openness, heterogeneity and scale, introduces a new dimension to the Semantic Web scenario, in which exploiting the relevant information to extract answers for Natural Language (NL) user queries is a major challenge. In this paper we discuss the issues and lessons learned from our experience of integrating PowerAqua as a front-end for DBpedia and a subset of Linked Data sources. As such, we go one step beyond the state of the art on end-users interfaces for Linked Data by introducing mapping and fusion techniques needed to translate a user query by means of multiple sources. Our first informal experiments probe whether, in fact, it is feasible to obtain answers to user queries by composing information across semantic sources and Linked Data, even in its current form, where the strength of Linked Data is more a by-product of its size than its quality. We believe our experiences can be extrapolated to a variety of end-user applications that wish to scale, open up, exploit and re-use what possibly is the greatest wealth of data about everything in the history of Artificial Intelligence. © 2010 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The semantic web vision is one in which rich, ontology-based semantic markup will become widely available. The availability of semantic markup on the web opens the way to novel, sophisticated forms of question answering. AquaLog is a portable question-answering system which takes queries expressed in natural language and an ontology as input, and returns answers drawn from one or more knowledge bases (KBs). We say that AquaLog is portable because the configuration time required to customize the system for a particular ontology is negligible. AquaLog presents an elegant solution in which different strategies are combined together in a novel way. It makes use of the GATE NLP platform, string metric algorithms, WordNet and a novel ontology-based relation similarity service to make sense of user queries with respect to the target KB. Moreover it also includes a learning component, which ensures that the performance of the system improves over the time, in response to the particular community jargon used by end users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The semantic web (SW) vision is one in which rich, ontology-based semantic markup will become widely available. The availability of semantic markup on the web opens the way to novel, sophisticated forms of question answering. AquaLog is a portable question-answering system which takes queries expressed in natural language (NL) and an ontology as input, and returns answers drawn from one or more knowledge bases (KB). AquaLog presents an elegant solution in which different strategies are combined together in a novel way. AquaLog novel ontology-based relation similarity service makes sense of user queries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile messaging is an integral and vital part of the mobile industry and contributes significantly to worldwide total mobile service revenues. In today’s competitive world, differentiation is a significant factor in the success of the business communication. SMS (Short Message Service) provides a powerful vehicle for service differentiation. What is missing, however, is the availability of personalized SMS messages. In particular, the exploitation of user profile information allows a selection and content delivery that meets preferences and interests for the individual. Personalization of mobile messages is important in today’s service-oriented society, and has proven to be crucial for the acceptance of services provided by the mobile telecommunication networks. In this paper we focus on user profile description and the mechanism for delivering the relevant information to the mobile user in accordance with his/her profile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The value of Question Answering (Q&A) communities is dependent on members of the community finding the questions they are most willing and able to answer. This can be difficult in communities with a high volume of questions. Much previous has work attempted to address this problem by recommending questions similar to those already answered. However, this approach disregards the question selection behaviour of the answers and how it is affected by factors such as question recency and reputation. In this paper, we identify the parameters that correlate with such a behaviour by analysing the users' answering patterns in a Q&A community. We then generate a model to predict which question a user is most likely to answer next. We train Learning to Rank (LTR) models to predict question selections using various user, question and thread feature sets. We show that answering behaviour can be predicted with a high level of success, and highlight the particular features that inuence users' question selections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PowerAqua is a Question Answering system, which takes as input a natural language query and is able to return answers drawn from relevant semantic resources found anywhere on the Semantic Web. In this paper we provide two novel contributions: First, we detail a new component of the system, the Triple Similarity Service, which is able to match queries effectively to triples found in different ontologies on the Semantic Web. Second, we provide a first evaluation of the system, which in addition to providing data about PowerAqua's competence, also gives us important insights into the issues related to using the Semantic Web as the target answer set in Question Answering. In particular, we show that, despite the problems related to the noisy and incomplete conceptualizations, which can be found on the Semantic Web, good results can already be obtained.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Online enquiry communities such as Question Answering (Q&A) websites allow people to seek answers to all kind of questions. With the growing popularity of such platforms, it is important for community managers to constantly monitor the performance of their communities. Although different metrics have been proposed for tracking the evolution of such communities, maturity, the process in which communities become more topic proficient over time, has been largely ignored despite its potential to help in identifying robust communities. In this paper, we interpret community maturity as the proportion of complex questions in a community at a given time. We use the Server Fault (SF) community, a Question Answering (Q&A) community of system administrators, as our case study and perform analysis on question complexity, the level of expertise required to answer a question. We show that question complexity depends on both the length of involvement and the level of contributions of the users who post questions within their community. We extract features relating to askers, answerers, questions and answers, and analyse which features are strongly correlated with question complexity. Although our findings highlight the difficulty of automatically identifying question complexity, we found that complexity is more influenced by both the topical focus and the length of community involvement of askers. Following the identification of question complexity, we define a measure of maturity and analyse the evolution of different topical communities. Our results show that different topical communities show different maturity patterns. Some communities show a high maturity at the beginning while others exhibit slow maturity rate. Copyright 2013 ACM.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Value of online Question Answering (QandA) communities is driven by the question-answering behaviour of its members. Finding the questions that members are willing to answer is therefore vital to the effcient operation of such communities. In this paper, we aim to identify the parameters that cor- relate with such behaviours. We train different models and construct effective predictions using various user, question and thread feature sets. We show that answering behaviour can be predicted with a high level of success.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Community-driven Question Answering (CQA) systems that crowdsource experiential information in the form of questions and answers and have accumulated valuable reusable knowledge. Clustering of QA datasets from CQA systems provides a means of organizing the content to ease tasks such as manual curation and tagging. In this paper, we present a clustering method that exploits the two-part question-answer structure in QA datasets to improve clustering quality. Our method, {\it MixKMeans}, composes question and answer space similarities in a way that the space on which the match is higher is allowed to dominate. This construction is motivated by our observation that semantic similarity between question-answer data (QAs) could get localized in either space. We empirically evaluate our method on a variety of real-world labeled datasets. Our results indicate that our method significantly outperforms state-of-the-art clustering methods for the task of clustering question-answer archives.